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Disclaimer

"The opinions expressed in this presentation and on the following slides are solely
those of the presenter and not necessary those of INVESTEC. INVESTEC does
not guarantee the accuracy or reliability of the information provided herein."
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Introduction and plan
Option pricing problem can be formulated as

I [f ] = E[f (x)] =
∫

Hd
f (x)dx, (1)

where E[.] is the mathematical expectation and f the payoff function, integrable in
the d-dimensional unit hypercube H d = [0, 1]d .
The standard MC estimator is

IN [f ] = 1
N

N∑
i=1

f (xi), (2)

where {xi} is a sequence of random points in H d of length N .

By law of large number, a.s, we have IN [f ] −→ I [f ] and central limit theorem
provides confidence interval:

I [f ] ∈ [IN [f ]± c σ̂N√
N

] (3)

with probability close to 1− αc for N large enough

with σ̂N :=
√

1
N−1

∑N
n=1(f (xi)− IN [f ])2 and αc = P[|X | > c] for X ∼ N (0, 1).
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Introduction and plan

MC convergence rate does not depend on the number of variable d but it is rather
slow.

→ In many financial applications, Quasi Monte Carlo (QMC) based on Sobol
low-discrepancy sequences (LDS) outperforms Monte Carlo showing faster and
more stable convergence:

Instead of random, LDS are specifically designed to place points {xi}
deterministically as uniformly as possible. Successive LDS points know about
the position of previously sampled points and fill the gaps between them;

IN [f ] −→ I [f ] as rate O(N−α) with 0.5 < α ≤ 1 depending on the effective
dimensionality of the underlying problem.

However, unlike MC, QMC lacks a practical error estimate.

→ Randomized QMC (RQMC) method combines the best of two methods: it
randomizes the points {xi} by preserving their low discrepancy property and
allows to compute confidence intervals around the estimated value, providing a
practical error bound.
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Introduction and plan

Plan:

RQMC and SobolSeq generators;

Hyperbolic local volatility model, discretization schemes, MC pricing and
Greek;

Numerical results: pricing and risk comparison between MC, Sobol QMC, and
RQMC (Owen scrambling and digital shift);

Summary.
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QMC Estimator

QMC estimator:

IN [f ] = 1
N

N∑
i=1

f (Qi), (4)

LDS points {Qi},Qi ∈ H d

Pros: High rate of (asymptotic) convergence: O(N−1) versus O(N−0.5) for MC

Cons: No practical estimates of the integration error: the Koksma-Hlawka
inequality εQMC = |IN [f ]− I [f ]| ≤ V (f )DN is too conservative and not practical.

We want to have practical confidence intervals similar to MC
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Example: MC with confidence intervals

I [f ] = (1 + 1/d)d
∫

[0,1]d

d∏
i=1

x1/d
i dxi = 1.0 (5)

P
[

IN [f ]− 0.6745
σMC√

N
< I (f ) < IN [f ] + 0.6745

σMC√
N

]
= 0.5 (6)

σMC =

[
1

(N − 1)

N∑
i=1

(f (Xi)− IN (f ))2

]1/2

. (7)

We want similar confidence intervals but with QMC
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Randomised QMC Estimator

A set of K randomised replication of {Qi}: {Vi} = V k
i , k = 1, ...,K .

µ̂k
n - the k − th RQMC estimator for (1):

µ̂k
n = 1

n

n∑
i=1

f (V k
i ), (8)

µ̂k
n are i.i.d. random variables

The RQMC sample mean

µ̄n = 1
K

K∑
k=1

µ̂k
n. (9)
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RQMC confidence intervals

Table: MC and RQMC sample standard deviations σ, RMSE errors ε and confidence
intervals. The total number of function evaluations N = nK .

σMC =
√

1
(N−1)

∑N
i=1(f (Xi)− IN [f ])2 σRQMC =

√
1

(K−1)
∑K

k=1(µ̂k
n − µ̄n)2

εMC = σMC√
N εRQMC = σRQMC√

K

IN [f ]± zδ/2εMC µ̄n ± zδ/2εRQMC

K is large enough - µ̄n ∼ N (I [f ], σRQMC ).
zδ is δ quantile: F(zδ) = 1− δ.
Example: For a 95% confidence interval, δ = .05, zδ/2 ≈ 1.96.
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Randomization with Owen’s scrambling

Base b-expansion of an LDS point Qi ∈ H d :

Qj
i =

m∑
p=1

qj
i,pb−p, (10)

j = 1, ..., d, i = 1, ...,N , N = bm,
b ≥ 2, qj

i,p ∈ {0, 1 . . . , b − 1}.
Coefficients qj

i,p are permuted:
vj

i,1 = πj(qj
i,1) , vj

i,2 = πj
(qj

i,1)(q
j
i,2), vj

i,3 = πj
(qj

i,1,q
j
i,2)(q

j
i,3), ... .

Owens’ scrambled version V j
i =

∑m
p=1 vj

i,pb−p of Qj
i

Uniform random permutations πj over the set of {0, 1 . . . , b − 1} are
1) mutually independent
2) each of them depends on previous leading digits of Qj

i (Owen 1997)1

1A.Owen. The Annals of Statistics, 25(4):1541, 1997.
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Randomization with Owen’s scrambling. Pros
and Cons

Pros: For sufficiently smooth functions εRQMC ∼ O(1/(n(3/2−α)))
√

n times higher than QMC rate O(1/(n(1−α))).

This reduction arises from random error cancellations.

Cons: Permutation tree Π ∼ d(bM − 1)/(b − 1) permutations.

Example: Sobol’ LDS: b = 2, M = 32, dimension d = 100 - Permutation tree
Π = (π, π0, π1, π00, π01, π10, π11, ..),∀j - need to store in memory ∼ 4.3 1011

permutations.

BRODA developed a modification of Owen’s scrambling with additional
permutations2. It has reduced memory and CPU requirements.

2E.Atanassov, S. Kucherenko. Implementation of Owen’s scrambling with additional
permutations for Sobol’ sequences. BRODA Ltd., UK, 2021
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Randomization with Digital Shift

A set d-dimensional Sobol’ points {Qi} in base b = 2

Qj
i =

m∑
p=1

qj
i,p2−p, (11)

Generate r.n. U ∼ U [0, 1]d , U j =
∑m

p=1 uj
p2−p

Randomised version V j
i =

∑m
p=1 vj

i,p2−p:

vj
i,p = (qj

i,p ⊕ uj
p)

⊕ - binary addition modulo 2 (a bitwise XOR operator):
0⊕ 0 = 0; 1⊕ 1 = 0; 0⊕ 1 = 1; 1⊕ 0 = 1
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Randomization with Digital Shift. Pros and
Cons

K randomised replicas of {Qi} → same set of {Qi} with different U k .

Pros: A. Satisfies statistical r.v. and LDS properties of RQMC.
B. Simple to implement and does not impose extra memory requirements.

Cons: Does not possess the increased rate of Owen’s scrambling (
εRQMC ∼ O(1/(n(3/2−α))) ).
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Example. Digital Shift

A set 2-dimensional Sobol’ LDS points in base b = 2,M = 6:

Qj
i =

6∑
p=1

qj
i,p2−p, (12)

Coefficients of binary expansion {qi,p} ∈ {0, 1}:
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Digital Shift. Example

Generate r.n. U . Assume {uj
p} in base b = 2: Ux = 100101,Uy = 000110

Recall 0⊕ 0 = 0; 1⊕ 1 = 0; 0⊕ 1 = 1; 1⊕ 0 = 1;
Applying ⊕ x1-comp. y1-comp.

000001 110011
100101 000110
100100 110101
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Comparison of Standard and Scrambled Sobol
Sequences

(a) SobolSeq (b) SobolOwen

Comparison of Random numbers and Sobol Sequences - Youtube, BRODA
Difference between Standard and Scrambled Sobol Sequences - Youtube, BRODA
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Different Sobol’ sequence generators

The efficiency of Sobol’ LDS generator depends on direction numbers. Badly
initialized direction numbers → poor 2D projections at low number of N 3.

Joe&Kuo’s generator - ’optimized’ 2D projections (maximum dim. d =21201)4.

BRODA’s SobolSeq - additional uniformity properties5:
1) Property A for all dimensions (maximum dim. d =131072)
2) Property A′ for adjacent dimensions.

BRODA’s SobolSeq generator outperforms Joe&Kuo’s generator

3P. Jackel, Monte Carlo Methods in Finance, John Wiley&Sons, 2002
4S.Joe, F.Y.Kuo. SIAM J. Scientific Comp., 30, 2635-2654, 2008
5I. Sobol’, D. Asotsky, A. Kreinin, S. Kucherenko. 2011, Wilmott Journal, Nov, 64-79
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Comparison of JoeKuo and BRODA SobolSeq
European call: S0 = 100, K= 100, r = 0.0, σ = 0.2, T = 1y. Ctheory = 7.966.
C = e−rT ∫

Hd max[0, (S0 exp[(r − σ2

2 )T + σ
√

T
d
∑d

j=1 Φ−1(uj)]−K)]du1...dud

BRODA - SobolSeq
BRODA Scrambled - Owen scrambling with additional permutations
JoeKuo - Direction numbers of Joe&Kuo
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Time homogeneous HLV model

Significant sensitivity of exotic price to market volatility skew (see e.g Gatheral 06)

=⇒ Skew models: time-homogeneous hyperbolic local volatility model (Jackel
2006)

dSt = rStdt + σ̃(St)dWt , S0 = 1, (13)

with the risk free interest rate and

σ̃(S) = ν
{ (1− β + β2)

β
St + (β − 1)

β

(√
S2

t + β2(1− St)2 − β
)}

(14)

and ν > 0 the level of volatility and β ∈ (0, 1] the skew parameter.
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Time homogeneous HLV model
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Figure: Impact of the value β on the hyperbolic local volatility for fixed volatility level
ν = 0.3.
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Time discretization schemes
Euler time discretization of the SDE

dY (t) = [r − 1
2σ

2(Y (t))]dt + σ(Y (t))dWt , Y (0) = log(S(0)), (15)

with Y (t) = ln(S(t)) and σ(Y ) = σ̃(eY )
eY .

Y n(ti+1) = Y n(ti) + [r −
1
2
σ2(Y n(ti))](ti+1 − ti) + σ(Y n(ti))(W (ti+1)−W (ti)) (16)

with Y n(0) = log(S(0)), ∆t = T
n , ti = i∆t, i = 0, ..,n.

Discretization of the Wiener process
Standard (incremental) discretization:

W (ti) = W (ti−1) +
√

∆tZi 1 ≤ i ≤ n, (17)
(Zi) independent standard normal variates.

Remark:

Zi
L= N−1(Ui), Ui → U[0, 1] (18)
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Time discretization schemes

Brownian bridge algorithm: it is based on the use of conditional distributions
1. First we generate the variable at the terminal point

W (T) =
√

TZ1 (19)
2. Then we fill other points using already found values of W (ti)

W (ti) = (1− γ)W (tl) + γW (tm) +
√
γ(1− γ)(m − l)∆tZi , (20)

where γ = i−l
m−l with l ≤ i ≤ m.

V (W (ti)|W (tl),W (tm)) = γ(1− γ)(m − l)∆t. (21)
It decreases at the successive levels of refinement and the first few points
contain the most of the variance.

Both algorithms generate discrete Brownian motion path for Euler scheme.
However, QMC and RQMC algorithms have different efficiencies with the
Brownian bridge algorithm getting a much higher convergence rate.
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Monte Carlo simulation of Asian option and
computation of Greeks
Geometric average Asian call option with payoff

PA = max(S̄ −K , 0), (22)

with S̄ = (
∏n

i=1 Si)
1
n where Si is the asset price at time ti = i T

n , 1 ≤ i ≤ n.

=⇒ High dimensionality problem.

Pricing and sensitivity factor ∆ are given by

AC (T ,K ) = e−rTEQ[PA] ≈ ACN (T ,K ) = e−rT

[
1
N

N∑
i=1

max(S̄ (i) −K , 0)
]
.

(23)

∆ = ∂AC (T ,K )
∂S(0) ≈ ACN (T ,K ,S(0) + εs)−ACN (T ,K ,S(0)− εs)

2εs
(24)

where S̄ (i) is an approximation of S̄ using the simulated price paths i.
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Numerical results:price and delta
convergence
Parameters: S0 = 100, r = 3%, T = 1, ν = 30%, β = 0.5, number of discrete
time steps d = 256 =⇒ high dimension problem.

Figure: Asian ATM call price w.r.t number of paths N

J. Hok and S. Kucherenko The importance of being scrambled: supercharged Quasi Monte Carlo



Numerical results:price and delta
convergence

Figure: Asian OTM call delta w.r.t number of paths N
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Numerical results: confidence intervals for
prices

Figure: Prices and confidence intervals for ITM call for MC method versus the number
of MC paths (in log2 scale)

.
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Numerical results: confidence intervals for
prices

Figure: Prices and confidence intervals for ITM call for RQMC method versus the
number of RQMC paths (in log2 scale) at K = 10

.
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Numerical results:Confidence intervals for
prices

Table: εMC and εRQMC at K=10, n=214 (N=163840). The ratio of MC to RQMC
error estimates is given for RQMC with Owen’s scrambling

ITM ATM OTM
εMC 1.7 10−2 1.1 10−2 1.4 10−2

εRQMC (Owen) 7.0 10−5 2.7 10−4 1.2 10−4

εRQMC (DS) 1.5 10−4 1.8 10−4 8.4 10−5

Ratio 243 40 116
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Numerical results: performance analysis

Power law integration error approximation:

ε ∼ C
Nα

. (25)

Use the RMSE below to approximate the rate of convergence

εN =

√√√√ 1
K

K∑
k=1

(
V −V (k)

N

)2
, (26)
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Numerical results: performance analysis

Figure: RMSE for ITM Asian call Prices w.r.t number of paths
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Numerical results: performance analysis

Figure: RMSE for ATM Asian call Deltas w.r.t number of paths
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Conclusions

Present and discuss the results of application of MC, QMC and RQMC
methods for derivative pricing and risk analysis using the hyperbolic local
volatility model;

Results on Asian option show the superior performance of the QMC and
RQMC methods;

Application of effective dimension reduction scheme s.t Brownian bridge or
PCA is critical and improves dramatically the efficiency of QMC and RQMC
methods based on Sobol’ sequences in comparison with the standard
(incremental) construction;

RQMC not only increases the rate of convergence of QMC but also allow to
compute confidence intervals around the estimated value. Efficiency of
RQMC strongly depend on the scrambling methods. We recommend using
Sobol’ LDS with Owen’s scrambling.
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