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Disclaimer

"The opinions expressed in this presentation and on the following slides are solely
those of the presenter and not necessary those of INVESTEC. INVESTEC does
not guarantee the accuracy or reliability of the information provided herein."
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Introduction and plan

Option pricing problem can be formulated as

I[f ] = E[f(x)] =
∫

Hd

f(x)dx, (1)

E[.] is the mathematical expectation.

f the payoff function, integrable in the d-dimensional unit hypercube Hd = [0, 1]d.

The standard MC estimator:

IN [f ] = 1
N

N∑
i=1

f(xi), (2)

a.s. IN [f ] −→ I[f ]. CLT provides confidence intervals:

I[f ] ∈ [IN [f ] ± c
σ̂N√

N
] (3)
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Introduction and plan

→ In many financial applications, Quasi Monte Carlo (QMC) outperforms Monte
Carlo

showing faster empirical convergence rate: IN [f ] −→ I[f ] as rate O(N−α)
with 0.5 < α ≤ 1

more stable convergence.

However, QMC lacks a practical error estimate.

→ Randomized QMC (RQMC) method by randomizing the LDS points {xi}
combines the best of two methods:

it allows to compute confidence intervals around the estimated value as in
MC;

It may further improve the convergence rate
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Outline

Randomized QMC;

Different Sobol’ sequence generators;

Hyperbolic local volatility model;

Standard, Brownian Bridge, PCA discretization schemes;

Results MC, QMC, RQMC pricing and Greeks computation of Asian options;

Global Sensitivity Analysis, Effective dimensions.
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Randomised QMC

Generate a set of n LDS points {Qi},

Generate a set of K randomised replication of {Qi}: {Vi} = V k
i , k = 1, ..., K.

Define µ̂k
n - the k − th RQMC estimator for (1):

µ̂k
n = 1

n

n∑
i=1

f(V k
i ), (4)

µ̂k
n are i.i.d. random variables

The RQMC sample mean

µ̄n = 1
K

K∑
k=1

µ̂k
n. (5)
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Computation of MC and RQMC confidence intervals

Table: MC and RQMC sample standard deviations σ, RMSE errors ε and confidence
intervals. The total number of function evaluations N = nK.

σMC =
√

1
(N−1)

∑N
i=1(f(Xi) − IN [f ])2 σRQMC =

√
1

(K−1)
∑K

k=1(µ̂k
n − µ̄n)2

εMC = σMC√
N

εRQMC = σRQMC√
K

IN [f ] ± zδ/2εMC µ̄n ± zδ/2εRQMC

K is large enough - µ̄n ∼ N(I[f ], σRQMC).
zδ is the 1 − δ quantile of the standard normal distribution: F (zδ) = 1 − δ.
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Different Sobol’ sequence generators

"All Sobol’ sequence generators are equal but some are more equal than others"

The efficiency of Sobol’ LDS generators depend on direction numbers.

Figure: Sobol’ sequences with badly initialized direction numbers.1

Joe&Kuo’s generator - ’optimized’ 2D projections (maximum dim. d =21201)2.

BRODA’s SobolSeq - additional uniformity properties3:
1) Property A for all dimensions (maximum dim. d =131072)
2) Property A′ for adjacent dimensions.

1P. Jackel, Monte Carlo Methods in Finance, John Wiley&Sons, 2002
2S.Joe, F.Y.Kuo. SIAM J. Scientific Comp., 30, 2635-2654, 2008
3I. Sobol’, D. Asotsky, A. Kreinin, S. Kucherenko. 2011, Wilmott Journal, Nov, 64-79
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Spurious variance component

Consider z = (z1, . . . , zd) ∼ N (0, I), and define z̄d = 1√
d

∑d
i=1 zi.

zi = F −1 (xi) , xi
′s− are Sobol’ points: {xi}N

i=1 ⊂ (0, 1)d

Example: A terminal asset value S(T ) in the case of d time steps

S(T ) =S0 exp
[(

r − 1
2σ2

)
T + σ

√
∆t (z1 + z2 + · · · + zd)

]
= (6)

=S0 exp
[(

r − 1
2σ2

)
T + σ

√
T z̄d

]
(7)

Here the Wiener path is sampled using the Standard (incremental) discretization
scheme.

J. Hok and S. Kucherenko The unreasonable effectiveness of Randomized Quasi-Monte Carlo in option pricing and risk analysis 9 / 33



Spurious variance component

Consider variance V (z̄d), assuming that E (z̄d) = 0 :

V (z̄d) =1
d

d∑
i=1

d∑
j=1

ρij = 1
d

 d∑
i=1

1 +
d∑

i=1

d∑
j:j ̸=i

ρij

 = 1 + ρ̄d. (8)

ρ̄d =1
d

d∑
i=1

d∑
j:j ̸=i

ρij is an average correlation, ρij = E [zizj ] . (9)

Theoretically ρij = 0, i ̸= j, hence V (z̄d) = 1.

Numerically ρ̄d ̸= 0 due to the presence of spurious correlations between different
dimensions of actual LDS sequences. We call ρ̄d - a "spurious variance
component"
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Comparison of Joe-Kuo and BRODA SobolSeq generators
European call: S0 = 100, K= 100, r = 0.0, σ = 0.2, T = 1y. CBS = 7.966.
C = e−rT

∫
Hd max[0, (S0 exp[(r − σ2

2 )T + σ
√

T
d

∑d

j=1 F −1(uj)] − K)]du1...dud

BRODA - SobolSeq generator; BRODA Scrambled - Owen’s scrambling with additional
permutations; Joe-Kuo - Direction numbers of Joe&Kuo

Joe-Kuo’s generator has unacceptably high spurious variance components.
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Randomization with Digital Shift

A set d-dimensional Sobol’ points {Qi} in base b = 2

Qj
i =

m∑
p=1

qj
i,p2−p, (10)

Generate r.n. U ∼ U [0, 1]d, U j =
∑m

p=1 uj
p2−p

Randomised version with Digital shift (DS):

V j
i =

m∑
p=1

vj
i,p2−p : (11)

vj
i,p = (qj

i,p ⊕ uj
p) (12)

⊕ - binary addition modulo 2 (a bitwise XOR operator):
0 ⊕ 0 = 0; 1 ⊕ 1 = 0; 0 ⊕ 1 = 1; 1 ⊕ 0 = 1
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Comparison of Randomization Methods

Method Pros Cons

Owen’s Scrambling4 Higher rate: εRQMC ∼ O(1/n(3/2−α))
√

n faster than QMC: O
(
1/n(1−α));

High CPU/memory;
Permutation tree size
Π ∼ d(bM − 1)/(b − 1)

Digital Shift
Simple to implement
No extra memory

No increased rate
of convegence

Owen’s scrambling is the most efficient sampling method. Accuracy is improved by
random error cancellations.

Note: BRODA’s modification of Owen’s scrambling5 reduces memory and CPU
demands.

4A. Owen, Ann. Stat., 25(4):1541, 1997
5E. Atanassov, S. Kucherenko, BRODA Ltd., UK, 2021
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Comparison of Sobol’, Digital Shift and Owen scrambling in
2D

Fig. First 128 points of 2D Sobol sequence6. First 16 points colored red.

Left: Sobol points: stratified 1D spacing. Aligned on 2D diagonals.
Middle: Digit scrambling: offsets 1D. 2D structure unchanged.
Right: Owen scrambling: jitters 1D/2D, preserves stratification.

6B. Burley, Practical Hash-based Owen Scrambling. J. Comp. Graphics Tech., 9 (4) 2020
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Comparison of Standard and Scrambled Sobol Sequences

(a) SobolSeq (b) SobolOwen

Video: Standard and Scrambled Sobol Sequences

Comparison of Random numbers and Sobol Sequences – YouTube, BRODA
Difference between Standard and Scrambled Sobol Sequences – YouTube, BRODA
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Time homogeneous HLV model and time discretisation
Asset prices follow:

dSt = rStdt + σ̃(St)dWt, S0 = 1, (13)

with the risk free interest rate r and time-homogeneous hyperbolic local volatility
(HLV) model7:

σ̃(S) = ν
{ (1 − β + β2)

β
St + (β − 1)

β

(√
S2

t + β2(1 − St)2 − β
)}

, (14)

Here ν > 0 - the level of volatility; β ∈ (0, 1] - the skew parameter.

Euler time discretization of the SDE

dY (t) = [r − 1
2σ2(Y (t))]dt + σ(Y (t))dWt, Y (0) = log(S(0)), (15)

with Y (t) = ln(S(t)) and σ(Y ) = σ̃(eY )
eY .

Y n(ti+1) = Y n(ti) + [r −
1
2

σ2(Y n(ti))](ti+1 − ti) + σ(Y n(ti))(W (ti+1) − W (ti)) (16)

with Y n(0) = log(S(0)), ∆t = T
d

, ti = i∆t, i = 0, .., d.
7Jaeckel, P. 2008. Hyperbolic local volatility. http://www.jaeckel.org/
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Time discretization schemes

Brownian path W = (W1, W2, . . . , Wd)T is normally distributed: E(W ) = 0 and
cov. matrix Σ = [min (ti, tj)]di,j=1
The value of options can be written as

EQ((f(S, K)) =EQ((f(W, K)) (17)

=
∫
Rd

P (W )
exp

(
− 1

2 W TΣ−1W
)√

(2π)d det(Σ)
dW (18)

=
∫
Rd

P (Lz)
exp

(
− 1

2 zTz
)√

(2π)d
dz (19)

=
∫

[0,1]d
P

[
LΦ−1(x)

]
dx, (20)

=
∫

[0,1]d
f(x)dx (21)

where we use the change of variable W = Lz in the second equality and for the
last equality, the mapping z = Φ−1(x) with Φ−1(x) the inverse of the standard
normal cumulative distribution function (applied elementwise). Here Σ = LLT.
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Discretization of the Wiener process

We will consider 3 different ways of Σ = LLT decomposition:
Cholesky factorization or standard discretization:

W (ti) = W (ti−1) +
√

∆tZi 1 ≤ i ≤ d, (22)

Zi independent standard normal variates. Cholesky factorisation of Σ = LLT.

Brownian bridge (BB) algorithm:
1. First we generate the variable at the terminal point

W (T ) =
√

T Z1 (23)
2. Then we fill other points using already found values of W (ti)

W (ti) = (1 − γ)W (tl) + γW (tm) +
√

γ(1 − γ)(m − l)∆tZi, (24)
where γ = i−l

m−l
with l ≤ i ≤ m. It can be seen from equation (24) that the

variance of the stochastic part of the BB formula decreases rapidly at the
successive levels of refinement and the first few points contain most of the
variance.
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Discretization of the Wiener process

PCA

L = UΛ1/2 = (U1 |U2| . . .)

 λ
1/2
1

λ
1/2
2

. . .

 . (25)

where:
U is an orthogonal matrix whose columns are the corresponding unit
eigenvectors (i.e., U⊤U = Id),

Λ = diag(λ1, λ2, . . . , λd) the diagonal matrix of eigenvalues of Σ with
λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.

PCA selects the transformation matrix L such that the first principal
component U1 captures the maximum variance of W ; the second component
U2 captures the maximum remaining variance, conditional on U1; and
subsequent components (U3, . . . , Ud) are determined iteratively.
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MC simulation of Asian option price and Greeks

Geometric average Asian call option payoff:

PA = max(S̄ − K, 0), (26)

with S̄ = (
∏n

i=1 Si)
1
d , where Si = S(ti), ti = i T

d , 1 ≤ i ≤ d.

Price:

AC(T, K) = e−rTEQ[PA] ≈ ACN (T, K) = e−rT

[
1
N

N∑
l=1

max(S̄(l) − K, 0)
]

,

(27)
where S̄(l) is S̄ at the simulated price paths l.

Sensitivities ∆ and Γ defined and approximated as :

∆ :=
∂AC(T, K)

∂S(0)
≈

ACN (T, K, S(0) + ϵs) − ACN (T, K, S(0) − ϵs)
2ϵs

(28)

Γ :=
∂2AC(T, K)

∂S2
0

≈
ACN (T, K, S(0) + ϵs) + ACN (T, K, S(0) − ϵs) − 2ACN (T, K, S(0))

ϵ2
s

(29)
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Numerical results:Confidence intervals for prices and
Greeks

Recall:

Table: MC and RQMC sample standard deviations σ, RMSE errors ε and confidence
intervals. The total number of function evaluations N = nK.

σMC =
√

1
(N−1)

∑N
i=1(f(xi) − µ̂N )2 σRQMC =

√
1

(K−1)
∑K

k=1(µ̂k
n − µ̄n)2

εMC = σMC√
N

εRQMC = σRQMC√
K

Table: εMC , εRQMC−BB and εRQMC−P CA of price estimations.

ITM ATM OTM
εMC 3.26 10−2 2.2 10−2 1.24 10−3

εRQMC−BB 3.67 10−4 6.09 10−4 4.04 10−4

εRQMC−P CA 3.2 10−4 3.11 10−3 3.05 10−4

εMC/εRQMC−BB 89 36 3
εMC/εRQMC−P CA 102 71 4
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Numerical results:Confidence intervals for prices and
Greeks

Table: εMC , εRQMC−BB and εRQMC−P CA of Deltas estimations.

ITM ATM OTM
εMC 3.29 10−4 2.43 10−3 4.09 10−4

εRQMC−BB 3.23 10−5 5.98 10−4 1.41 10−4

εRQMC−P CA 3.25 10−5 4.91 10−4 4.05 10−4

εMC/εRQMC−BB 10 4 3
εMC/εRQMC−P CA 10 49 10

Table: εMC , εRQMC−BB and εRQMC−P CA of Gammas estimations.

ITM ATM OTM
εMC 4.41 10−5 9.08 10−4 2.24 10−4

εRQMC−BB 3.72 10−5 6.79 10−4 1.82 10−4

εRQMC−P CA 2.20 10−5 1.33 10−4 4.62 10−5

εMC/εRQMC−BB 1 1 1
εMC/εRQMC−P CA 2 7 5
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Numerical results: performance analysis
Power law integration error approximation:

εn ∼ C

nα
. (30)

Use the RMSE below to approximate the rate of convergence

εn =

√√√√ 1
K

K∑
k=1

(
V − V

(k)
n

)2
, (31)

V is the reference Price or Greek values.
ITM ATM OTM

RQMC BB (Price) 1.0 0.8 0.77
RQMC PCA (Price) 1.0 0.91 0.97
RQMC BB (Delta) 0.7 0.64 0.58
RQMC PCA (Delta) 0.88 0.73 0.87
RQMC BB (Gamma) 0.58 0.6 0.55
RQMC PCA (Gamma) 0.54 0.86 0.71

Table: Extracted α in RQMC BB and RQMC PCA
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performance analysis for ATM price (a), delta (b) and
gamma (c)

(c) (d)

(e)

Figure: RMSE for ATM Asian call prices (a) deltas (b) gammas (c) w.r.t number of
paths n, K = 10. Owen’s scrambling is used in RQMC.
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ANOVA decomposition and Sobol’ Sensitivity Indices

Let’s consider a square integrable f(x) in Hd = [0, 1]d. f has an unique ANOVA
decomposition:

f(x) = f0 +
n∑

i=1
fi (xi) +

∑
i

∑
j>i

fij (xi, xj) + . . . + f1,2,...d (x1, x2, . . . , xd) (32)

if

f0 =
∫

[0,1]d

f(x) dx, (33)

and for all k = 1, 2, . . . , s∫ 1

0
fi1,...,is(xi1 , ....., xis)dxik

= 0. (34)

Each ANOVA term fi1,...,is(xi1 , ....., xis) is a function of a unique subset of
variables from x and the terms are orthogonal.
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ANOVA decomposition and Sobol’ Sensitivity Indices

Variance decomposition:

σ2 =
d∑

i=1
σ2

i +
d∑

i=1

d∑
i<j

σ2
ij + .... + σ2

12...d. (35)

Here σ2 is the total variance,

σ2
i1,...,is

=
∫ 1

0
f2

i1,...,is
(xi1 , ....., xis

)dxi1 ...dxis
(36)

are called partial variances.

Sobol’ Sensitivity Indices (SI):

1 =
n∑

i=1
Si +

∑
i<j

Sij +
∑

i<j<l

Sijl + . . . + S1,2,...,d (37)

where Si1,...,is
:= σ2

i1,...,is

σ2 .
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Back to the option pricing problem

EQ[f(S, K)] = EQ[f(W, K)] (38)

=
∫
Rd

P (W )
exp

(
− 1

2 W TΣ−1W
)√

(2π)d det(Σ)
dW (39)

=
∫
Rd

P (Lz)
exp

(
− 1

2 zTz
)√

(2π)d
dz (40)

=
∫

[0,1]d

P
[
L Φ−1(x)

]
dx (41)

=
∫

[0,1]d

f(x) dx. (42)

We transformed the option price into an expectation over independent uniforms.
Which dimensions of x impact the price most?

The key is to analyze the integrand f(x):
1 By computing its Sobol’ indices, we identify the most influential drivers.
2 By calculating its mean effective dimension, we gain insight into the overall

complexity of the problem.
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Mean effective dimension

Definition: The mean dimension of f is

d̂ =
∑

u⊆1:d
|u|Su. (43)

with |u| the cardinality of a set of variables u

Theorem (Owen 2011): d̂ =
∑d

i=1 Stot
i

with the total Sobol’ index for input variable xi defined as

Stot
i :=

∑
u⊆{1,...,d}

i∈u

Su :=
Dtot

y

σ2 (44)

It satisfies 1 ⩽ d̂ ⩽ d. Various examples show that QMC outperforms MC
integration if the integrand f(x) has d̂ < 3
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Mean effective dimension
By denoting x = (y, z), we have

Theorem (Sobol 2001): Subset’s total variance Dtot
y is equal to

Dtot
y = 1

2

∫
[f(y, z) − f(y′, z)]2dxdy′ (45)

Let ξj = (ηj , ζj), ξ′
j = (η′

j , ζ ′
j) independent random points uniformly ditributed

in Hd with j = 1, ..., N . Then

1
2N

N∑
i=1

[
f(ξj) − f(η′

j , ζj)
]2 P−→ Dtot

y . (46)

Table: Mean effective dimension d̂ for Asian option price and Greeks, ITM

BB PCA Standard
Price 1.10 1.0 1.0
Delta 1.04 1.0 1.22
Gamma 6.0 1.80 26.6
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Mean effective dimension

Table: Mean effective dimension d̂ for Asian option price and Greeks, ATM

BB PCA Standard
Price 1.11 1.01 1.3
Delta 1.37 1.05 3.22
Gamma 4.79 1.80 29.3

Table: Mean effective dimension d̂ for Asian option price and Greeks, OTM

BB PCA Standard
Price 2.21 1.12 5.8
Delta 2.10 1.1 4.28
Gamma 4.10 1.62 26.43
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Sobol SI for Asian option price

Figure: Total Sobol SI w.r.t variable xi for Standard (SD), BB and PCA schemes

The initial coordinates of Sobol’ sequences are much better distributed than the later
high dimensional coordinates. The Brownian bridge and PCA discretizations use low well
distributed coordinates from each d-dimensional LDS vector point to determine most of
the structure of a path and reserves the later coordinates to fill in fine details.
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Conclusions

RQMC with Owen’s scrambling outperforms MC and QMC, enabling reliable
confidence intervals and faster convergence.

Effective dimension reduction (PCA, Brownian Bridge) is the key driver of
efficiency, yielding substantial accuracy gains in both pricing and Greeks.

PCA-based RQMC consistently delivers the lowest RMSE, outperforming all
other methods and making difficult sensitivities (especially Gamma) feasible
and reliable.

Effective dimension, not nominal dimension, determines success for
high-dimensional, path-dependent financial simulations.

J. Hok and S. Kucherenko The unreasonable effectiveness of Randomized Quasi-Monte Carlo in option pricing and risk analysis32 / 33



References

Hok, J and Kuchenrenko, S. Pricing and Risk Analysis in Hyperbolic Local
Volatility Model with Quasi Monte Carlo. Wilmott, 2021(113):62-9

Kuchenrenko, S and Hok, J. The importance of being scrambled:
supercharged Quasi Monte Carlo. Journal of Risk, 26(1):1-20,2023.

Scoleri S, Bianchetti M, Kucherenko S. Application of Quasi Monte Carol and
Global Sensitivity Analysis to Option Pricing and Greeks: Finite Differences
vs. AAD. Wilmott. 2021(116):66-83

Sobol I., Kucherenko S. Global Sensitivity Indices for Nonlinear Mathematical
Models. Review, Wilmott, 2005(1):56-61.

Sobol, I.M., Asotsky, D., Kreinin, A. and Kucherenko, S. Construction and
Comparison of High-Dimensional Sobol Generators, Wilmott, 2011(56),
64-79.
Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates, Mathematics and Computers in Simulation,
2001(55), 271-280.

J. Hok and S. Kucherenko The unreasonable effectiveness of Randomized Quasi-Monte Carlo in option pricing and risk analysis33 / 33


