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DISCLAIMER

"The opinions expressed in this presentation and on the following slides are solely
those of the presenter and not necessary those of INVESTEC. INVESTEC does
not guarantee the accuracy or reliability of the information provided herein."

J. Hok AND S. KUCHERENKO THE UNREASONABLE EFFECTIVENESS OF RANDOMIZED QUASI-MONTE CARL(



INTRODUCTION AND PLAN

Option pricing problem can be formulated as

E[.] is the mathematical expectation.

(1)

f the payoff function, integrable in the d-dimensional unit hypercube H¢ = [0, 1]%.

The standard MC estimator:
| X
INlf] = N;f(l“i),

a.s. In[f] — I[f]. CLT provides confidence intervals:

6N]

I[f] € In[f1 + TN

()

3)

J. Hok AND S. KUCHERENKO THE UNREASONABLE EFFECTIVENESS OF RANDOMIZED QUASI-MONTE CARL(



INTRODUCTION AND PLAN

— In many financial applications, Quasi Monte Carlo (QMC) outperforms Monte
Carlo

e showing faster empirical convergence rate: In[f] — I[f] as rate O(N %)
with 0.5 < a <1

@ more stable convergence.

However, QMC lacks a practical error estimate.

— Randomized QMC (RQMC) method by randomizing the LDS points {z;}
combines the best of two methods:

o it allows to compute confidence intervals around the estimated value as in
MC;

@ It may further improve the convergence rate
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OUTLINE

Randomized QMC;

Different Sobol’ sequence generators;

Hyperbolic local volatility model,

Standard, Brownian Bridge, PCA discretization schemes;

Results MC, QMC, RQMC pricing and Greeks computation of Asian options;

@ Global Sensitivity Analysis, Effective dimensions.
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RAaNnDOMISED QMC

Generate a set of n LDS points {Q;},
Generate a set of K randomised replication of {Q;}: {Vi} =VF¥ k=1,..,K.

Define ik - the k — th RQMC estimator for (1):

1y
i =—>_fV)), (4)
i=1
fiF are i.i.d. random variables
The RQMC sample mean
K
_ 1 K
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CoMPUTATION OF MC AND RQMC CONFIDENCE INTERVALS

TABLE: MC and RQMC sample standard deviations o, RMSE errors £ and confidence
intervals. The total number of function evaluations N = nK.

ouc = /o T (F(X) = Inlf)?

K [ _
ORQMC = \/ﬁ et (01 — fin)?

oMC

TMC = N

__ ORQMC
ERQMC = VE

IN[f] + 2z5)26 mC

Hn t 2526 RQMC

K is large enough - ji, ~ N(I[f],0rQMmC)-

zs is the 1 — § quantile of the standard normal distribution: F(z5) =1 — 4.
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DIFFERENT SOBOL’ SEQUENCE GENERATORS

"All Sobol" sequence generators are equal but some are more equal than others"
The efficiency of Sobol’ LDS generators depend on direction numbers.

Sobol” (unit initialisation) Sobel” (unit initialisation)

i)

FIGURE: Sobol’ sequences with badly initialized direction numbers.}

Joe&Kuo's generator - 'optimized’ 2D projections (maximum dim. d =21201)2.

BRODA's SobolSeq - additional uniformity properties:
1) Property A for all dimensions (maximum dim. d =131072)
2) Property A’ for adjacent dimensions.

IP. Jackel, Monte Carlo Methods in Finance, John Wiley&Sons, 2002
2S Joe, F.Y.Kuo. SIAM J. Scientific Comp., 30, 2635-2654, 2008
31. Sobol’, D. Asotsky, A. Kreinin, S. Kucherenko. 2011, Wilmott Journal, Nov, 64-79

J. Hok AND S. KUCHERENKO THE UNREASONABLE EFFECTIVENESS OF RANDOMIZED QUASI-MONTE CARL(



SPURIOUS VARIANCE COMPONENT

Consider z = (21,...,2q4) ~ N(0,I), and define z; = % Z?:l %
2z = F~1 (x;) ,'s— are Sobol’ points: {z;}, c (0,1)?

Example: A terminal asset value S(T) in the case of d time steps

S(T) =So exp [(r - ;02) TroVAt(ntmt +z)| =  (6)
_Spexp [(r - ;02) T aﬁzd] 7)

Here the Wiener path is sampled using the Standard (incremental) discretization
scheme.
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SPURIOUS VARIANCE COMPONENT

Consider variance V' (Z4), assuming that £ (z4) =0 :

d d d d
Vi gzz zwzzp” =147 (®)
i=1 j=1 i=1 =1 j:j#i
14
= Z Z pij is an average correlation, p;; = E [z;2;] . 9)
i=1 j:ji

Theoretically p;; = 0,7 # j, hence V (z4) = 1.
Numerically pg # 0 due to the presence of spurious correlations between different

dimensions of actual LDS sequences. We call p; - a "spurious variance
component"
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COMPARISON OF JOE-Kuo AND BRODA SOBOLSEQ GENERATORS

European call: So = 100, K= 100, r =0.0, 0 = 0.2, T = 1y. Cps = 7.966.
2
C=e"" [ amax[0, (Soexp[(r — 5)T +o/T30 | F~ ' (uy)] — K)]dua...dua

Error ATM Call
65635 simulations

Broda J‘
JoeKuo
Broda Scrambled

P I FOU S IV VPO R RSN U S P SOV O W
1 21 22 93 94 95 98 o7 23 9 510 511 512 513 514 515 516
N dimensions

BRODA - SobolSeq generator; BRODA Scrambled - Owen’s scrambling with additional
permutations; Joe-Kuo - Direction numbers of Joe&Kuo

Joe-Kuo's generator has unacceptably high spurious variance components.
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RANDOMIZATION WITH DIGITAL SHIFT

A set d-dimensional Sobol’ points {Q;} in base b =2

= qu@? » (10)

Generate r.n. U ~ U[0,1]¢, U7 = Z;n 1

Randomised version with Digital shift (D

o
S):

m

Zzﬂ 27P (11)

Ug,p = (qzjm @ ug,) (12)

@ - binary addition modulo 2 (a bitwise XOR operator):
060=0;11=0;001=1;100=1

J. Hok AND S. KUCHERENKO THE UNREASONABLE EFFECTIVENESS OF RANDOMIZED QUASI-MONTE CARL(



COMPARISON OF RANDOMIZATION METHODS

Method

Pros

Cons

Owen’s Scrambling?

Higher rate: erQumc ~ O(l/n(3/2—a))
/n faster than QMC: O (1/n(1*a));

High CPU/memory;
Permutation tree size

I~ db™ —1)/(b—1)

Digital Shift

Simple to implement No increased rate

No extra memory of convegence

Owen's scrambling is the most efficient sampling method. Accuracy is improved by
random error cancellations.

Note: BRODA's modification of Owen’s scrambling® reduces memory and CPU

demands.

4A. Owen, Ann. Stat., 25(4):1541, 1997
5E. Atanassov, S. Kucherenko, BRODA Ltd., UK, 2021
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COMPARISON OF SOBOL’, DIGITAL SHIFT AND OWEN SCRAMBLING IN
2D

Saobol Sobol-RDS Sobol-Owen

. . . % N . L
. - My o . 2

Fig. First 128 points of 2D Sobol sequence®. First 16 points colored red.

Left: Sobol points: stratified 1D spacing. Aligned on 2D diagonals.
Middle: Digit scrambling: offsets 1D. 2D structure unchanged.
Right: Owen scrambling: jitters 1D/2D, preserves stratification.

5B, Burley, Practical Hash-based Owen Scrambling. J. Comp. Graphics Tech., 9 (4) 2020
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COMPARISON OF STANDARD AND SCRAMBLED SOBOL SEQUENCES

Sobol sequence (BRODA) Sobol Scrambled (Owen)
1 > < ] 1 - A -
. . b I ]
09 . hd - 09 - ol @
0 .
osfe °| ° . 08 ol . M
*s . T
07 L ¢ » . 0.7 o [ *
. . - o| hd
06 i . o06[ @
. e . . o
. . . .
05 0 05 »
. o .
. e . ® e
04 - Y L] 04 L]
. . .
. | . d
03 . . o 03 e .
02 . ° °le 02r, . . ¢
° . v + °
01 01 .
o| * ° 4 . .
i ° . 0 ’ ° .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
(a) SobolSeq (b) SobolOwen

Video: Standard and Scrambled Sobol Sequences

Comparison of Random numbers and Sobol Sequences — YouTube, BRODA
Difference between Standard and Scrambled Sobol Sequences — YouTube, BRODA
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https://www.broda.co.uk/Video/SobolSeqR.mp4
https://www.youtube.com/watch?v=QnJQpXrOs34
https://www.youtube.com/watch?v=TmrobpYC8Bs

TIME HOMOGENEOUS HLV MODEL AND TIME DISCRETISATION

Asset prices follow:
dSt = TStdt + Er(St)th, So = 1, (13)

with the risk free interest rate r and time-homogeneous hyperbolic local volatility
(HLV) model”:

o) = {2 s C2D (Vs mi-sr-0) ) )

Here v > 0 - the level of volatility; 8 € (0, 1] - the skew parameter.

Euler time discretization of the SDE

dy (t) =[r — %UZ(Y(t»]dt +o(Y(¢))dW:, Y(0) =log(S(0)), (15)

with Y () = In(S(t)) and o(Y) = 25

Y™ (tig1) = Y™ (i) + [r — %UQ(Y"(ti))](tm —t) +o(Y"(t:)(W(tiv1) —W(t:))  (16)

H n _ _ T =z s __
with Y (0) = 1log(5(0)), At = ,t; = iAt, i =0, .., d.
7 Jaeckel, P. 2008. Hyperbolic local volatility. http://www.jaeckel.org/
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TIME DISCRETIZATION SCHEMES

Brownian path W = (W, Wa, ..., Wq)" is normally distributed: E(W) = 0 and

cov. matrix 3 = [min (ti,tj)]‘;jzl

The value of options can be written as

EX((£(S, K)) =E%((f(W, K)) (17)

:/ P(W)eXp(_%WTE_1W>dW (18)
R (2m)d det (D)

_ exXp (—%ZTZ)

_/Rd P(Lz)i@ﬂ)d dz (19)

:/ P[L® ' (2)] du, (20)
[0,1)4

[ s (21)
f0,1)4

where we use the change of variable W = Lz in the second equality and for the
last equality, the mapping z = ®~!(z) with ®71(x) the inverse of the standard
normal cumulative distribution function (applied elementwise). Here ¥ = LLT.
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DISCRETIZATION OF THE WIENER PROCESS

We will consider 3 different ways of ¥ = LLT decomposition:

@ Cholesky factorization or standard discretization:
W(t;) = W(ti-1) + VALZ; 1 <i<d, (22)
Z; independent standard normal variates. Cholesky factorisation of ¥ = LLT.

@ Brownian bridge (BB) algorithm:
1. First we generate the variable at the terminal point

W(T) =VTZ (23)
2. Then we fill other points using already found values of W (¢;)
W(t) = (L= )W (t) + AW (tm) + V/y(L = 7)(m — DALZ;,  (24)
where v = “=L with [ < i < m. It can be seen from equation (24) that the

variance of the stochastic part of the BB formula decreases rapidly at the
successive levels of refinement and the first few points contain most of the
variance.
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DISCRETIZATION OF THE WIENER PROCESS

o PCA
A2

L=UAY?= (U, |Uy]...) AL : (25)

where:
e U is an orthogonal matrix whose columns are the corresponding unit
eigenvectors (i.e., U'U = 14),

o A =diag(A1, Az2,...,Aq) the diagonal matrix of eigenvalues of ¥ with
A1 2> X2 > 2 A 2 0.

PCA selects the transformation matrix L such that the first principal
component U; captures the maximum variance of W; the second component
U, captures the maximum remaining variance, conditional on Uy; and
subsequent components (Us, ..., Uy) are determined iteratively.
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MC SIMULATION OF ASIAN OPTION PRICE AND GREEKS

Geometric average Asian call option payoff:
P4 = max(S — K,0), (26)

with S = (T[/-, i), where S; = S(t;), t; =i%, 1 <i<d.

Price:

N
AC(T,K) = e "TEQ[Py] ~ ACN(T,K) = ™7 % > max(SY - K,0)],
=1

o (27)
where SO is S at the simulated price paths .
Sensitivities A and I' defined and approximated as :
A DAC(T.K)  ACN(T,K,5(0) + ) — ACN(T, K, S(0) — e:) (28)
25(0) 2€,
Fa 9?AC(T,K)  ACN(T,K,S(0) 4+ €5) + ACN (T, K, S(0) — e5) — 2ACN (T, K, 5(0)) (29)
- 852 - 2
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NUMERICAL RESULTS: CONFIDENCE INTERVALS FOR PRICES AND
GREEKS

Recall:

TABLE: MC and RQMC sample standard deviations o, RMSE errors ¢ and confidence
intervals. The total number of function evaluations N = nK.

N ~ K N _
omc = \/ﬁ s (f(xi) — in)? | orQume = \/(Kﬁ >kt (A, = in)?

emc = 2 ErQMC = TS
TABLE: epmc, eErQmc—BB and ergmc—pca of price estimations.
ITM ATM OT™M

emMc 32610 2| 22107 [ 124103
ERQMC—BB 36710 7 6.0910° % [ 404107
ERQMC—PCA 321077 [ 3.11107% [ 3.0510° 7
EMC/ERQMC—BB 89 36 3
EMC/ERQMC—PCA 102 71 4
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NUMERICAL RESULTS: CONFIDENCE INTERVALS FOR PRICES AND
GREEKS

TABLE: epmc, Eromc—BB and ergumce—pca of Deltas estimations.

IT™ ATM OTM
EMC 32910°% [ 2431073 | 4.09 10~ %
ERQMC—BB 3231075 [ 5.9810~ %] 1.41107°*%
ERQMC—PCA 325107° | 491 107% | 4.05 104
EMC/ERQMC—BB 10 4 3
eEMc/EROMC—PCA 10 49 10

TABLE: epmc, ERQMC—-BB and ERQMC—PCA of Gammas estimations.

IT™M ATM OT™M
envc 441107° [ 9.08107 %[ 2241071
ERQMC—BB 37210°° [ 6.7910°% [ 1.82 107 ¢
ERQMC—PCA 220107° [ 1.3310°% [ 462107°
EMC/ERQMC—BB 1 1 1
EMC/ERQMC—PCA 2 7 5
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NUMERICAL RESULTS: PERFORMANCE ANALYSIS

Power law integration error approximation:

e & (30)

ne

Use the RMSE below to approximate the rate of convergence

K

wm 7 (v @

k=1

V is the reference Price or Greek values.

ITM | ATM | OTM

RQMC BB (Price) 10 | 08 | 0.77
RQMC PCA (Price) 10 | 091 | 097
RQMC BB (Delta) 07 | 064 | 058

RQMC PCA (Delta) 0.88 | 0.73 0.87
RQMC BB (Gamma) 0.58 0.6 0.55
RQMC PCA (Gamma) | 0.54 | 0.86 0.71

TABLE: Extracted o in RQMC BB and RQMC PCA
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PERFORMANCE ANALYSIS FOR ATM PRICE (A), DELTA (B) AND
GAMMA (C)

Log2(Price)

Log2(Delta)

9 10 11 12 13 14 15 16 17
Log2(n)

Log2(n)

®MC 4QMC-BB +RQMCBB @ RQMC-PCA mMC 4QMCBB +RQMC-BB RQMC-PCA

(c) (d)

Log2(Gamma)

13 14 15 16 17
Log2(n)

© 4—
n
5
n
2
S

®WMC 4QMC-BB RQMC-BB ®RQMC-PCA

(e)

J. Hok AND S. KUCHERENKO THE UNREASONABLE EFFECTIVENESS OF RANDOMIZED QUASI-MONTE CARL(




ANOVA DECOMPOSITION AND SOBOL’ SENSITIVITY INDICES

Let's consider a square integrable f(z) in H% = [0,1]%. f has an unique ANOVA
decomposition:

fO+Zfz xz +Zz.fz] xwxj -~-+f1,2,...d(x17x27~--7$d) (32)

i J>i

fo= [ fa)da (33)

and forall k=1,2,... s

fh,---,is (IE“, ..... ,l‘zq)di]}zk = O (34)
0

Each ANOVA term f;, . (ziy,.....,2;,) is a function of a unique subset of
variables from x and the terms are orthogonal.
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ANOVA DECOMPOSITION AND SOBOL’ SENSITIVITY INDICES

Variance decomposition:

DILID ) WA

1=1 1<

2

Here o is the total variance,

2 2
Tiric = | fir i

are called partial variances.

Sobol" Sensitivity Indices (SI):

1_28 +Zsz]+ Z 52]l+

1<j<l

1<J

where S;, ;= s

J. Hok AND S. KUCHERENKO

-+ 0%y g (35)

.+ S12,...4 (37)
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BACK TO THE OPTION PRICING PROBLEM

E2[f(S, K)] = EX[f (W, K)] (38)
P(W) exp(— WY ) (39)
Rd (2m)? det(2)
_ eXp(—lZTZ)
=/, P(Lz) 7(2%[1 (40)
:/ P[L® ! (z)] da (41)
[0,1]¢
:/ f(z)dz. (42)
[0,1]¢

We transformed the option price into an expectation over independent uniforms.
Which dimensions of x impact the price most?

The key is to analyze the integrand f(z):
@ By computing its Sobol’ indices, we identify the most influential drivers.

@ By calculating its mean effective dimension, we gain insight into the overall
complexity of the problem.
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MEAN EFFECTIVE DIMENSION

Definition: The mean dimension of f is
d= " |ulS,. (43)
uCl:d
with |u| the cardinality of a set of variables u
Theorem (Owen 2011): d = 3¢ | Stot
with the total Sobol’ index for input variable z; defined as

Dtot
Stet .= Z S (44)

uC{1,..
ZEu

It satisfies 1 < d < d. Various examplgs show that QMC outperforms MC
integration if the integrand f(x) has d < 3
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MEAN EFFECTIVE DIMENSION

By denoting « = (y, z), we have

Theorem (Sobol 2001): Subset's total variance D" is equal to

1

Dyt =5 [Uf.2) ~ £/, )P dady (45)

Let & = (1, (), & = (0], (;) independent random points uniformly ditributed
in H* with j =1,...,N. Then

N
o o) - F ) D D (46)
i=1

TABLE: Mean effective dimension d for Asian option price and Greeks, ITM

BB PCA | Standard
Price 1.10 | 1.0 1.0
Delta 1.04 | 1.0 1.22
Gamma | 6.0 | 1.80 26.6
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MEAN EFFECTIVE DIMENSION

TABLE: Mean effective dimension d for Asian option price and Greeks, ATM

BB PCA | Standard
Price 1.11 | 1.01 1.3
Delta 1.37 | 1.05 3.22
Gamma | 4.79 | 1.80 29.3

TABLE: Mean effective dimension d for Asian option price and Greeks, OTM

BB PCA | Standard
Price 2.21 | 1.12 5.8
Delta 210 | 1.1 4.28
Gamma | 4.10 | 1.62 26.43
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SoBOL SI FOR ASIAN OPTION PRICE

1

; a BB * PCA +SD

4

08 fet
"00 N

oS ' e
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5 ¢ e
£ ’-
@ 04 f—i ey
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1 .
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'
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1E-08 et a0 0000000000000 o
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Time step number

FIGURE: Total Sobol Sl w.r.t variable z; for Standard (SD), BB and PCA schemes

The initial coordinates of Sobol’ sequences are much better distributed than the later
high dimensional coordinates. The Brownian bridge and PCA discretizations use low well
distributed coordinates from each d-dimensional LDS vector point to determine most of
the structure of a path and reserves the later coordinates to fill in fine details.
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CONCLUSIONS

o RQMC with Owen's scrambling outperforms MC and QMC, enabling reliable
confidence intervals and faster convergence.

o Effective dimension reduction (PCA, Brownian Bridge) is the key driver of
efficiency, yielding substantial accuracy gains in both pricing and Greeks.

o PCA-based RQMC consistently delivers the lowest RMSE, outperforming all
other methods and making difficult sensitivities (especially Gamma) feasible
and reliable.

o Effective dimension, not nominal dimension, determines success for
high-dimensional, path-dependent financial simulations.
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