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1. Evaluation of high dimensional integrals using MC and QMC methods 

 

There are three main applications of Monte Carlo methods. First, the generation of (quasi 

or pseudo) random numbers is used to generate representative samples ( scenarios), to describe 

the uncertainties of the problem at hand through probabilities distributions (Niederreiter H., 1992 

). Second, random number sampling is used for random search in stochastic optimization ( 

Kucherenko S., 2005 ). Third, the simulation problem can be presented as evaluation of integrals. 

In this section we consider this application.  

Many problems in numerical analysis and physics are concerned with high dimensional 

integrals. While the classical grid methods are very efficient for low dimensional integrands, 

they become computationally impractical when the number of dimensions d increases and thus 

the number of required integrand evaluations grows exponentially. This effect is known as "the 

curse of dimensionality". In contrast, the convergence rate of Monte Carlo (MC) integration 

methods does not depend on the number of dimensions d. However, the rate of convergence 
1/ 2(1/ )O N , where N is the number of sampled points, attained by MC is rather slow. A higher 

rate of convergence can be obtained by using deterministic uniformly distributed sequences 

instead of pseudo-random numbers. Methods based on the usage of such sequences are known as 

Quasi Monte Carlo (QMC) methods. Asymptotically, QMC can provide the rate of convergence 

O(1/N). 

Consider evaluation of an integral 

[ ] ( )
nH

I f f x dx= ∫ , 

where the function ( )f x  is integrable in the d-dimensional unit hypercube Hd. Classical grid 

methods have an integration error decreasing as O(N-p/d), where p is the order of an integration 

method. The Monte Carlo quadrature formula is based on the probabilistic interpretation of an 

integral. For a random variable that is uniformly distributed in Hd 

[ ] [ ( )]I f E f x= , 
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where [ ( )]E f x  is the mathematical expectation. An approximation to this expectation is 

1

1[ ] ( )
N

N i
i

I f f x
N =

= ∑ , 

where { }ix  is a sequence of random points in of length N .  The approximation [ ]NI f  

 converges to [ ]I f  with probability 1. Consider an integration error ε defined as 

[ ] [ ]NI f I fε = − . 

It follows from the Central Limit Theorem that the expectation of ε2 is 
2

2 ( )( ) fE
N

σε = , 

where 2 ( )fσ  is the variance given by 

2 2 2( ) ( ) ( ( ) )
n nH H

f f x dx f x dxσ = −∫ ∫  

Then the expression for the root mean square error of the MC method is 

2 1/ 2
1/ 2

( )= ( ( ))MC
fE

N
σε ε = . 

In contrast to grid methods, the convergence rate of MC methods does not depend on the number 

of variables d although it is rather slow. 

 

 

2. Regular grid, MC and QMC sampling methods 

 

The efficiency of MC methods is determined by the properties of the random numbers. It is 

known that random number sampling is prone to clustering: for any sampling there are always 

empty areas as well as regions in which random points are wasted due to clustering. As new 

points are added randomly, they do not necessarily fill the gaps between already sampled points. 

Low-discrepancy sequences (LDS) are specifically designed to place sample points as uniformly 

as possible. Unlike random numbers, successive low discrepancy points “know" about the 

position of previously sampled points and fill the gaps between them ( Fig 2.1). LDS are also 

known as quasi random numbers.  
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Fig. 2.1. Regular grid, MC and QMC distributions of N=64 ( upper row ) and N=256 ( lower row 

) points in two dimensions  

The regular grid of points (or lattice methods) seems be an efficient way for the integral 

evaluation. For up to 4 dimensions it works better or not worse than random sampling. For 

dimensions higher than 4, regular grid is not practical.  

The points in the regular grid are centred into each cell of the grid. Fig 2.2 illustrates the 

difference between the regular grid and quasi Monte Carlo sampling. It also illustrates a very 

important property of LDS: the projection of the d-dimensional LDS on the s-dimensional 

subspace forms the s-dimensional LDS. It is important to note that in practice low dimensional 

projections have good uniform distributions, while in high dimensions LDS may not be 

particularly well equidistributed for feasible N. In particular, it explains the efficiency QMC 

methods in high dimensions for many practical problems although formal measures like 

discrepancy show that in high dimensions LDS sampling may be not as good as random number 

sampling ( see next paragraph ). The regular grid of points does not possess this property. This is 

why it is obvious that LDS sampling gives much better way of arranging N points in d–

dimensions. 

Regular Grid/ 64 Points Random Numbers/ 64 Points Sobol Numbers/ 64 Points

Sobol Numbers/ 256 PointsRandom Numbers/ 256 PointsRegular Grid/ 256 Points
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Fig. 2.2 Two different ways of arranging N=16 points in two dimensions 

 

There are three problems for the use of regular grid for evaluation of integrals: 

1. The problem of dimensionality ("the curse of dimensionality"). It’s been discussed in the 

previous section.  

2. It is not possible to incrementally enlarge the size of the grid and at the same time keep the 

grid uniform. This means that with a uniform grid approach it is not possible to have a 

termination criterion that can be invoked incrementally. 

3. The concavity bias. The regular grid generates small errors that add up, whereas random 

sampling generates big errors that cancel on average. The details can be found in Dupire & 

Savine (1998 ). 

The random and quasi-random sampling methods do not have this kind of problems; 

however, there are significant differences between them. A very important difference is that 

quasi random numbers are more uniformly distributed. One the useful quantitative measures 

uniformity is the discrepancy. 

 

 

3. Discrepancy 

Regular Grid Sobol’ Numbers 
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Discrepancy measures the extent to which the points are evenly dispersed in the unit 

hypercube. Consider a number of points N from a sequence { }x  in an d - dimensional rectangle 

Q whose sides are parallel to the coordinate axes, dQ H∈ . Then, the discrepancy is defined as 

sup ( )
d

Q
N

Q H

N
D m Q

N∈
= − , 

where m(Q) is a volume of Q and NQ is the number of points of the sequence { }x  that are 

contained in Q.  

A low discrepancy sequence is one satisfying the upper bound condition:  

(ln  )( )
n

N
ND c d

N
≤  

Constant ( )c d  depends on the sequence and even on the dimension, but does not depend on N. 

For random numbers the expected discrepancy is 
1/ 2((ln  ln  ) / )ND O N N=  

 

 

4. The Koksma- Hlawka bound 

 

The Koksma- Hlawka inequality gives an upper bound for the QMC integration error: 

( ) NV f Dε ≤ . 

Here, V (f) is the variation of ( )f x . It is assumed that ( )f x  is a function of bounded variation in 

the sense of Hardy and Krause ( Niederreiter, 1992 ). Apparently, the smaller the discrepancy 

DN, the better the convergence of the QMC integration.  

It was shown experimentally in Morokoff & Caflisch ( 1995) that the QMC integration 

error is determined by the variance and not by the variation of the integrand. It is generally 

accepted that the rate of the discrepancy determines the expected rate of the accuracy, so one can 

use an estimate of the QMC convergence rate  

(ln  )n

QMC
O N

N
ε =  

 

 

4. Construction of low-discrepancy sequences 
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There are a few well-known and commonly used LDSs. Different principles were used 

for their construction by Halton, Faure, Sobol, Niederreiter and others. The LDS developed by 

Niederreiter has the best theoretical asymptotic properties ( Niederreiter, 1992 ). However, many 

practical studies have proven that the Sobol' LDS is in many aspects superior to other LDS ( 

Bratley et al, 1992, Caflisch, 1997). 

 

 

4.1 Halton’s sequence 

 

Halton’s sequence is the easiest to construct. Consider an integer n in a base b, where b is 

a prime number: n = (···a4a3a2a1a0)b  In the decimal system 
1

 
m

j
j

j

n a b
=

=∑ . Reverse the digits and 

add a radix point to obtain a number within the unit interval 

y = (0. a0a1a2a3a4···)b 

The n-th number in the Halton’s sequence with base b is 

1

1
( ; ) 

m
j

j
j

h n b a b− −

=

= ∑ . 

Here logbm n= . d – dimensional Halton’s sequence {( ( ;2), ( ;3),..., ( ; )}dh n h n h n b , ib  is the 

prime number.  

The Halton sequence uses one different prime base for each dimension. For the first 

dimension it uses base 2, for the second dimension it uses base 3, for the third dimension it uses 

base 5, and so on. Higher base means higher cycle and higher computational time.  

The major problem for the quasi-random sequences is their degradation when the 

dimension is large. The generation process of uniformly distributed points in [0, 1)d becomes 

increasingly harder as d increases because the space to fill becomes too large.  

The high-dimensional Halton sequences exhibit long cycle lengths, due the large prime 

number base. For example, in the dimension 50, is used the base 229, the 50th prime number. 

The long cycle length means that the high-dimensional sequence needs several numbers for an 

entire walk in the interval [0, 1). Halton’s sequence becomes unsatisfactory after dimension 14. 

In practice, due the correlation, practitioners prefer to avoid the use of Halton’s sequence for 

more than 6 or 8 dimensions. 

 

 

4.2 Sobol’ sequence 
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The construction of Sobol’ sequence is rather complex. The Sobol’ sequence numbers 
1 2 d

n n n nx  = (x ,x ,...,x ) are generated from a set of binary fractions of length b bits, 
j j j j j

1 2 3 b 2v  = (0.v v v ...v )  , j=1,…,d. Obviously, that jv {0,1}i ∈ . 

As above n- th number in a sequence is considered in a binary form  

n = (···b4b3b2b1b0)2 

To produce the Sobol’ integer j
nx   the following formula is used 

j j j j
n 1 1 2 2 bx  = b v b v ... v⊕ ⊕ ⊕ , 

where ⊕  is an addition modulo 2 operator: 0⊕ 0 =0, 1⊕ 1=0, 0⊕ 1=1, 1⊕ 0=1. ⊕  can also be 

seen as bit wise XOR. This result is obtained by performing the bitwise exclusive XOR of the 

direction numbers vi, for which bi≠0. Direction numbers are defined below.  

The final conversion to a uniform variate j
ny  is performed by dividing j

nx  by 2 jb
: 

j j
n ny / 2 jbx= . 

To generate direction numbers, we first need a primitive polynomial, which is irreducible 

polynomial with binary coefficients over the field  G2.  
1

1 1 ... 1, {0,1}q q
l q kP x a x a x a−

−= + + + + ∈ . 

It is irreducible ( can’t be factored ) and the smallest power p for which polynomial 

divides xp +1 is p = 2q – 1. Examples of primitive polynomials: x+1, x2 + x + 1, x3 + x+ 1, 

x3+x2+1. 

A different primitive polynomial is used in each dimension. Given a primitive 

polynomial of degree q, mi’s are defined by a recurrence relation in integer arithmetic 

mi = 2a1mi-1⊕  22a2mi-2⊕  ··· ⊕ 2qmi-q ⊕mi-q 

The recurrence relation defined by the degree 0 polynomials is mi = 1. To fully define the 

direction numbers initial numbers m1,…, md are required. An algorithms which provides initial 

numbers for an efficient Sobol’ sequence generation is presented in Sobol' et al ( 1992). Once mi 

are generated, direction numbers are defined as vi  = mi / 2i , where mi < 2i is an odd integer.  

The Sobol' LDS satisfies the following the three main requirements (Sobol', 1976 ): 

1. Best uniformity of distribution as N →∞. 

2. Good distribution for fairly small initial sets. 

3. A very fast computational algorithm. 

As a result, points generated by the Sobol' LDS produce a very uniform filling of the space even 

for a rather small number of points N, which is a very important point in practice. 
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Fig. 4.1 2D rojections from adjacent dimensions for Sobol’ , Sobol’ with unit initialization, 

Niederreiter and Holton LDS (Jackel, 2002). 

 

In Sobol's algorithm direction numbers is a key component to its efficiency. In some 

implementations ( f.e. Tezuka, 1995 ) this critical issue was overlooked. As a result, constructed 

LDS did not satisfy above-mentioned criteria and did not perform well in tests ( Fig. 4.1). 

We conclude this chapter by a quote “Preponderance of the experimental evidence 

amassed to date points to Sobol’ sequences  as the most effective quasi-Monte Carlo method for 

application in financial engineering.” (Glassserman, 2003). 

 

 

5. Discrepancy. Numerical results 
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To compare uniformity properties of randon numbers and quasi random sequences the L2  

discrepancy was calculated for various dimensions ( Fig. 5.1 – Fig. 5.3 ). n
NT  discrepancy is 

defined in Tezuka (1995). 

Notations for the figures:  

“Random” is random number generator Urand taken from Forsythe et al (1977). 

“Sobol” is Sobol’ LDS (Broda, 2008 )  

“Halton ” is Halton LDS 

0.0001

0.001

1024 2048 4096 8192

T

N
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Fig. 5.1 Comparison of  n
NT  discrepancy in 5 dimensions for the first 213 points. 
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Fig. 5.2 Comparison of  n
NT  discrepancy in 10 dimensions for the first 216 points. 
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Fig. 5.3 Comparison of  n
NT  discrepancy in 20 dimensions for the first 216 points. 

 

It can be seen that for very low dimensions ( up to 5 ) both LDS are superior to random 

numbers. In higher dimensions ( d > 50 ) the performance of Halton LDS becomes inferior to 

that of Sobol’ LDS and random numbers.  
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6. Normally distributed variates 

 

Many practical simulation problems require generation of normally distributed variates. 

For variate y with the probability distribution p(y) the fundamental transformation law of 

probabilities defines relationship between p(y) and a known distribution p(x) is  

( ) ( )p y dy p x dx=       (6.1) 

From (6.1) 

( ) ( ) dxp y p x
dy

=       (6.2) 

If p(x) is a uniform probability distribution then we can solve the differential equation (6.2) to 

obtain 

( ') '
y

x p y dy
−∞

= ∫  

Or  

( )x F y= ,       (6.3) 

where ( )F y  is the cumulative distribution function. Equation (6.3) can be solved with regard to 

variate y:  
1( ) ( )y x F x−= .      (6.4) 

Here x is uniformly distributed variate, has the required  probability distribution p(y). Method 

(6.4) is known as the inverse transformation method. One of the difficulties associated with this 

method is for many important distributions the inverse function 1( )F x−  does not exist in 

analytical form.  

In particular, the cumulative normal distribution function 

2 / 21 1( ) [1 ( )]
22 2

y
w yF y e dw erf

π
−

−∞

= = +∫  can not be expressed in terms of simple arithmetic 

operations ( additions, subtractions, multiplications, and root extractions ), and must be either 

computed numerically or otherwise approximated. The most efficient method based on the 

inverse transformation method is a method by Moro.  

Transformation method (6.2) can be straightforwardly generalised to the 

multidimensional case.  
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One the simple and popular transformation methods for producing normal variates is the 

Box- Muller method. We generate two uniformly distributed variates 1 2,γ γ . Then using the 

following transformation 

1 1 2

2 1 2

2ln cos2

2ln sin 2

ζ γ πγ

ζ γ πγ

= −

= −
 

we obtain two normally distributed variates 1 2,  ζ ζ  . However, the Box- Muller method is not 

efficient in combination with LDS because it mixes well distributed low dimensions with less 

well distributed high dimensions. Therefore, the inverse transformation method should be used 

for practical purposes. 

 

 

7. Tests for normality 

 

Quality of sampling can be verified by various statistical analysis techniques: histogram, the 

normal probability plot. Smignov-Kolmogorov test and some other methods. 

The histogram graphically shows the following:  

1. center (i.e., the location) of the data;  

2. spread (i.e., the scale) of the data;  

3. skewness of the data;  

4. presence of outliers; and  

5. presence of multiple modes in the data. 

These features provide strong indications of the proper distributional model for the data. The 

histogram is obtained by splitting the range of the data into equal-sized bins (called classes). 

Then for each bin, the number of points from the data set that fall into each bin is counted. That 

is  

1. Vertical axis: Frequency (i.e., counts for each bin) 

2. Horizontal axis: Response variable 
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Fig. 7.1 The histograms obtained by using transformed Sobol’ sequences (left figure ) (BRODA, 

2008) and S-Plus normal number generator rnorm(N,0,1) ( right figure ), ( Insightful (2008, 

N=40  

 

Fig. 7.1 shows that normal distribution generated by using Sobol’ sequences has much better 

statistical properties than normal distribution based on random numbers. 

 

The table 7.1 quantitatively illustrates the statistical properties of random numbers and Sobol’ 

sequences. 
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Table 7.1. Comparison of normally distributed random variables using Sobol’ Sequences and S-

Plus rnorm(N,0,1) function. 

Sobol – SobolNorm1D S_Plus – normal(0,1) S_Plus – normal(0,1) 

Min: -3.297190e+000 

1st Qu.: -6.752590e-001 

Mean: -3.218717e-003 

Median: -6.119700e-004 

3rd Qu.:  6.721875e-001 

 Max:  3.097270e+000 

 Total N:  1024.000 

 NA's :  0.000000e+000 

 Std Dev.:  9.994393e-001 

Min:    -2.93674364 

1st Qu.:    -0.68085430 

Mean:    -0.02383565 

Median:    -0.04290438 

3rd Qu.:     0.63453304 

Max:     2.71813014 

Total N:  1024.000 

NA's :     0.00000000 

Std Dev.:     0.98017813 

Min: -3.708886e+000 

1st Qu.: -6.825863e-001 

Mean:  1.282197e-003 

Median: -1.114428e-003 

3rd Qu.:  6.803170e-001 

Max:  3.814796e+000 

Total N:  1.000000e+004 

NA's :  0.000000e+000 

Std Dev.:  1.001605e+000 

 

Comparison of statistical measures shows that to achieve the same accuracy of generated 

distributions S-Plus rnorm(N,0,1) requires approximately 1000 times more points than the 

normal variate generator SobolNorm1D ( see Appendix )  

 

The normal probability plot is a graphical technique for assessing whether or not a data 

set is approximately normally distributed ( Chambers, 1983 ). The data are plotted against a 

theoretical normal distribution in such a way that the points should form an approximate straight 

line. Departures from this straight line indicate departures from normality.  

The normal probability plot is formed by:  

1. Vertical axis: Ordered response values  

2. Horizontal axis: Normal order statistic medians  

The observations are plotted as a function of the corresponding normal order statistic medians 

which are defined as:  

N(i) = G(U(i)) 

where U(i) are the uniform order statistic medians (defined below) and G is the percent point 

function of the normal distribution. The percent point function is the inverse of the cumulative 

distribution function. That is, given a probability, we want the corresponding x of the cumulative 

distribution function.. 

The uniform order statistic medians are defined as follows:  
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m(i) = 1 - m(n) for i = 1 

m(i) = (i - 0.3175)/(n + 0.365) for i = 2, 3, ..., n-1  

m(i) = 0.5(1/n) for i = n 

The further the points vary from this line, the greater the indication of departures from normality 

.  

Fig. 7.2 Normal probability plots obtained by using SobolNorm1D generator (left figure ) and S-

Plus rnorm(N,0,1) generator ( right figure ). 

 

Fig. 7.2 presents a comparison between normal probability plots generated using Sobol 

sequences and random number generators. Results clearly show that normal distribution obtained 

by using Sobol sequences is much closer to a straight line ( we recall, that  a straight line is a 

theoretical limit ). 

 

 

8.1. Evaluation of high dimensional integrals.  

Uniformly distributed sequences 
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The integrals of several popular tests functions in high dimensions ( d = 360 ) are 

approximated by using random and Sobol’ sequences ( Fig. 8.1 – Fig. 8.3). For each example the 

root mean square error is approximated by the formula , 0 1cN α α− < < .  

The root mean square error is defined as  
1/ 2

2

1

1 ( )
K

k
d N

k

I I
K

ε
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ , 

where K is a number of independent runs versus number of sampled points N. For the MC 

method all runs were statistically independent. For QMC integration for each run a different part 

of the Sobol' LDS was used. For all tests K=50. 

 

 

Fig. 8.1 Root mean square integration error for 
1 1

( ) ( 1)
jd

j
i

j i

f x x
= =

= −∑ ∏ , where d = 360. 

 

 

Fig. 8.2 Root mean square integration error for 
1

( ) ( ) /( 0.5)
d

i
i

f x d x d
=

= − −∏ , where d = 360. 
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Fig. 8.3 Root mean square integration error for 1/

1

( ) (1 1/ )
d

d
i

i

f x d x
=

= +∏ , where d = 360. 

 

Presented results show that QMC integration is superior to that of MC both in terms of the rate 

of convergence ( larger α  ) and in the absolute value of the integration error ( constant c ). 

 

 

8.2 Evaluation of high dimensional integrals. 

Normally distributed sequences 

 

Consider Keister’s test integral: 

 
2

cos( )
d

x
dI x e dx−= ∫ , 

where x  denotes the Euclidian norm in 
d

. Integral dI  can be further transformed  

 
2

2

/ 2/ 2

/ 2
/ 2

/ 2

/ 2 1 2

[0,1]
1

2 cos( / 2)

cos( / 2)
(2 )

cos( ( ) ( ) / 2) ,

d

d

d

yd
d

y
d

d

d
d

i
i

I y e dy

ey dy

t dt

π
π

π φ

−−

−

−

=

=

=

=

∫

∫

∑∫
   (8.1) 
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Here φ  is the cumulative normal distribution function with mean 0 and variance 1: 

2 / 21( ) , [ , ].
2

u su e ds uφ
π

−

−∞
= ∈ −∞ ∞∫  

We consider case of d=25, the exact value of dI  ( d=25 ) is  -1356914. Evaluation of (8.1) 

involves generations of 25-dimensional vector of normal variates. The root mean square error 

defined in chapter 8.1 is presented in Fig. 8.4.  
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Fig. 8.4 Root mean square integration error for Keister’s 25-dimentional integral. QMC – solid 

circles, MC – clear circles. 

 

Results show superior performance of the QMC approach based on Sobol sequences. The 

convergence rate for the QMC method decreases as 1/ N , while for the MC method this rate is 

only 1/N1/2 .  

Results were obtained with S-Plus 8.0 for Windows (Insightful, 2008). BRODA’s 

SobolSeq generators were interfaced with S-Plus.  

 

 
8.3 Comparison between MC and QMC methods for evaluation of quantiles 

 



 19

Consider evaluation of quantiles for distibution 2

1
( )

n

i
i

f x x
=

= ∑ , where ix  are independent 

standard normal variates, n  is the dimension.  
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Fig. 8.5 Comparison betweeen MC and QMC methods for evaluation of quantiles. Low quantile 

= 0.01, dimension n = 10.  QMC – triangles, MC – solid circles 
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Fig. 8.6 Comparison betweeen MC and QMC methods for evaluation of quantiles. High quantile 

= 0.99, dimension n = 10.  QMC – triangles, MC – solid circles  
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Fig 8.5 and 8.6 present RMSE of evaluation of quantiles versus the number of sampled 

point for dimension n = 10. RMSE is calculated by 
1/ 2

( ) 2

1

1 ( )
L

l
est N

l

Q Q
L

ε
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ .       

The number of independent runs L = 10, estQ  are estimates obtained with N = 106 points: 

estQ  low  =2.55, estQ  high =23.20. ( )l
NQ  is an estimated value of quantile on l-th run for N-points. 

Results clearly show a superior convergence of the QMC method.  

It is clear from Fig 8.5 and 8.6 that the QMC approach gives a higher convergence rate 

than the MC method.  

Results were obtained with S-Plus 8.0 for Windows (Insightful, 2008). BRODA’s 

SobolSeq generators were interfaced with S-Plus. 
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