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Abstract
Monte Carlo and Quasi Monte Carlo methods for pricing European and Asian call
options are compared. Two different discretization schemes, namely the standard
discretization and the Brownian Bridge construction are considered. Results show
superior performance of the QMC approach based on Sobol’ sequences with the
Brownian Bridge discretization regardless of dimensionality. Global sensitivity

1 Introduction
Monte Carlo (MC) simulation is a common tool in valuation of complex
financial instruments. It is popular because of the lack of analytical solu-
tions for most financial models. The convergence rate of MC methods is
O(1/

√
N), where N is the number of sampled points. It does not depend

on the number of variables n although it is rather slow. A higher rate of
convergence can be obtained by using deterministic uniformly distrib-
uted sequences known as low-discrepancy sequences (LDS) instead of
pseudo-random numbers. Methods based on the usage of LDS are known
as Quasi Monte Carlo (QMC). Asymptotically, QMC can provide a rate of
convergence ∼ O(1/N).

The solution of many financial problems can be reduced to evaluation
of the Wiener path integrals. To achieve a fast convergence for path inte-
grals an important role is played by path discretization algorithms. Two
widely used algorithms are known as the standard discretization algo-
rithm and the Brownian bridge construction. Both algorithms were con-
sidered by Sobol’ (1962, 1973). The Brownian bridge construction was
analyzed by Moskowitz et. al. in 1996 within the framework of the QMC
approach. Both algorithms have the same variance, hence their MC con-
vergence rates are the same. However, the corresponding QMC algorithms
have different efficiencies with the Brownian bridge having much higher
convergence rate. It was suggested that the improvement in convergence
is due to reduction of the effective dimension of the problem. The notion
of the “effective dimension” was introduced in Caflisch et. al. (1997).

However, this measure of the quality of QMC methods is rather complex
and it depends on an arbitrary confidence level. The approach presented
in this paper is more general and practical. It is based on global sensitivity
analysis (SA).

Global SA offers a comprehensive approach to model analysis. It enables
the identification of key parameters whose uncertainty most affects the
output. It then can be used to rank variables, fix unessential variables or
decrease problem dimensionality. Global SA is a relatively new method
but its efficiency and importance has been already recognized in many
areas. However, it has hardly been applied in finance ( for references see
Complongo et. at. 2006, Sobol’ et. al. 2005).

Unlike local SA, global SA methods evaluate the effect of a factor while
all other factors are varied as well and thus they account for interactions
between variables and do not depend on the stipulation of a “nominal”
point. The method of global sensitivity indices developed by Sobol’ (1993,
2001) is based on ANOVA type of a high dimensional model representa-
tion. It is superior to other SA methods, such as those based on correlation
or regression coefficients because it is model-independent; it allows the 
estimation of not only the individual contribution of each input parame-
ter to the output variance but it also captures the interaction effects. It
also allows the calculation of the total sensitivity indices, which measure
the total contribution of a single input factor, and thus avoids the “curse
of dimensionality”.

Global SA can be used to access the efficiency of numerical schemes. In
Sobol’ et. al. (2005) global SA was applied for explaining the effectiveness



It follows from the Central Limit Theorem that the expectation of ε2 is

E(ε2) = σ 2(f )

N
,

where σ 2(f ) is the variance given by

σ 2(f ) =
∫

Hn

f 2(x)dx − (

∫
Hn

f (x)dx)2.

Then the expression for the root mean square error of the MC method is

εN = (E(ε2))1/2 = σ (f )

N1/2
. (2.4)

The convergence rate of MC does not depend on the number of variables
n although it is rather low.

The efficiency of MC methods is determined by the properties of random
numbers. It is known that random number sampling is prone to clustering:
for any sampling there are always empty areas as well as regions in which
random points are wasted due to clustering. As new points are added ran-
domly, they do not necessarily fill the gaps between already sampled points.

LDS are specifically designed to place sample points as uniformly as
possible. Unlike random numbers, successive LDS points “know” about
the position of previously sampled points and “feel” the gaps between
them. LDS are also known as quasi random numbers. The QMC algo-
rithm for the evaluation of the integral (2.2) has a form similar to (2.3)

IN = 1

N

N∑
i=1

f (qi). (2.5)

Here {qi} is a set of LDS points uniformly distributed in a unit hypercube
Hn, qi = (q1

i , . . . , qn
i ).

There are a few well-known and commonly used LDS. Different prin-
ciples were used for their construction by Holton, Faure, Sobol’,
Niederreiter and others. Many practical studies have proven that the
Sobol’ LDS is in many aspects superior to other LDS ( Jaeckel 2002,
Wilmott 2005). For this reason it was used in this work.

Sobol’ LDS were constructed by following the three main require-
ments (Sobol’,1992 ):

1. Best uniformity of distribution as N → ∞.

2. Good distribution for fairly small initial sets.
3. A very fast computational algorithm.

Points generated by the Sobol’ LDS produce a very uniform filling of the
space even for a rather small number of points N, which is a very impor-
tant case in practice.

For the best known sequences {qi} the estimate for the rate of conver-
gence IN → I is known to be O(lnn N)/N. This rate of convergence is much
faster than that for the MC method (4), although it depends on the dimen-
sionality n. Consequently, the smaller n, the better this estimate. In prac-
tice at n > 1 the rate of convergence O(lnn N)/N is not observed. It appears
to be approximately N−α , 0 < α ≤ 1. For financial problems 0.5 < α ≤ 1.

Hence, the QMC method always outperforms MC in terms of convergence.
As shown in the following sections, α can be dramatically increased by
using so-called effective dimension reduction techniques.
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of the Brownian Bridge construction using a test problem. In Kucherenko
et. al (2007) this technique was applied for explaining the effectiveness of
high dimensional integration based on QMC methods.

The rest of this paper is organized as follows. The next section presents
a brief review of the MC and QMC methods and LDS. Section 3 describes
two schemes for discretization of the Wiener process and the MC approach
for option pricing. Section 4 introduces global SA. In Section 5 the results
of our experiments, the pricing of European and geometric average Asian
options are presented. Both options have closed-form solutions, which
makes them ideal for comparison purposes. We compare traditional MC
and QMC methods based on standard and the Brownian bridge discretiza-
tion schemes. The superior performance of the QMC approach is explained
by comparing global sensitivity indexes for both discretization schemes.
Finally, conclusions are presented in section 6.

2 MC and QMC algorithms
Consider the Wiener path integral:

I =
∫

C
F[x(t)]dW x, (2.1)

where C is the space of all functions x(t) continuous in the interval
0 ≤ t ≤ T with a boundary condition x(0) = x0. The integral (2.1) can be
seen as an expectation with respect to the Wiener measure on C, so that
I = E(F[W (t)]). Here W(t) is a random Wiener processes ( also known as a
Brownian motion ). The MC approach in this case would consist of con-
structing many random paths W(t), evaluating F[W(t)] and averaging the
results. In addition, discretization algorithms for constructing W(t) are
required. They are considered in the following section. Assuming that
path W(t) is approximated by n-dimensional disctretization scheme, (2.1)
can be reduced to the multidimensional integral

I[f ] =
∫

Hn

f (x)dx. (2.2)

Here function f (x) is integrable in the n-dimensional unit hypercube Hn.

The MC quadrature formula is based on the probabilistic interpretation
of an integral. For a random variable that is uniformly distributed in Hn

I[f ] = E[f (x)],

where E[f(x)] is the mathematical expectation. An approximation to this
expectation is

IN [f ] = 1

N

N∑
i=1

f (xi), (2.3)

where {xi} is a sequence of random points in Hn of length N. The approxi-
mation IN [f ] converges to I[f] with probability 1.

Consider an integration error defined as

ε = |I[f ] − IN [f ]|.
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3 Option pricing

3.1 Discretization of the Wiener process

Consider the problem of pricing an option on a single asset whose value
at time t is denoted by S(t). We assume the asset follows a geometric
Brownian motion process:

dS = µSdt + σ SdW . (3.1)

Here µ is the drift rate, σ is the volatility, t is time, W is the standard
Brownian motion:

dW = Z(dt)1/2, (3.2)

where Z is a normally distributed random variable N(0,1) with mean 0
and variance 1. Using Ito’s lemma and the risk neutral measure assump-
tion equations (3.1), (3.2) with constant coefficients r and σ can be solved
analytically

S(t) = S0 exp

[(
r − 1

2
σ 2)t + σW (t)

)]
.

Here W (t) is a Wiener path up to time t starting at W (t = 0) = 0. One
time step �t can be simulated using equation

S(t + �t) = S(t) exp [( r − 1

2
σ 2)�t + σ (W (t + �t) − W (t) )] . (3.3)

In a discrete case of n equally distributed time steps, formula (3.3) has the
following form:

S(ti+1) = S(ti) exp

[(
r − 1

2
σ 2)�t + σW (ti + �t) − W (ti)

)]
.

Here �t = T/n, ti = i�t, 1 ≤ i ≤ n.

We consider two algorithms for the discretization of equation (3.2). The
first one is known as the standard discretization algorithm. Its construction
follows directly from the definition of W(t). The second one is the alterna-
tive discretization algorithm which is based on the use of conditional dis-
tributions.

The standard discretization algorithm for stochastic differential equa-
tion (3.2) is defined by the relation:

W (ti) = W (ti−1) + √
�tZi, 1 ≤ i ≤ n. (3.4)

A terminal asset value S(T) is given by

S(T) = S0 exp

[(
r − 1

2
σ 2)T + σ

√
�t(Z1 + Z2 + · · · + Zn

)]
.

In the standard discretization algorithm the evolution of an asset value is
generated by normal variates with equal weights.

In the Brownian bridge discretization, the value of W (ti) is generated
from values of W (tl), W (tm), l ≤ i ≤ m at earlier and later time steps.
Unlike the standard discretization, which generates W (ti+1) sequentially
along the time horizon, the Brownian bridge discretization first gener-
ates the variable at the terminal point

W (T) = √
TZ1

and then it fills other points using already found values of W (ti). In the
case of n = 2p, p is an integer number p > 0, subsequent values of W (ti)

are evaluated at the successive midpoints T/2, T/4, 3T/4, 3T/8, 5T/8, 7T/8,
T/16 and so on. In this case the Brownian bridge discretization scheme
has a form ( Sobol’ 1962, Sobol’ 1973):

W (T) = √
TZ1,

W (T/2) = 1

2
W (T) + 1

2

√
TZ2,

W (T/4) = 1

2
W (T/2) + 1

2

√
T/2Z3,

W (3T/4) = 1

2
(W (T/2) + W (T)) + 1

2

√
T/2Z4,

...

W ((n − 1)T/n) = 1

2
(W ((n − 2)T/n) + W (T)) + 1

2

√
T/nZn.

(3.5)

The generalised Brownian bridge formula is given by

W (ti) = (1 − γ )W (tl) + γ W (tm) +
√

γ (1 − γ )(m − l)�tZi, (3.5)

where γ = i−l
m−l (Morokoff, 1998). It can be seen from equation (3.5) that

the variance of the stochastic part of the Brownian bridge formula
γ (1 − γ )(m − l)�t. It decreases rapidly at the successive levels of refine-
ment. This variance is less than that in (3.4) as γ (1 − γ )(m − l) < 1.

Therefore, the first few points contain the most of the variance. Both
algorithms have the same variance, hence their MC convergence rates
are the same but QMC algorithms have different efficiencies with the
Brownian bridge algorithm having a much higher convergence rate
(Caflisch et. al. 1997, Sobol’ et. al. 2005 ).

3.2 Monte Carlo simulation of option pricing

In a risk-neutral environment, the value of European style options is the
discounted value of its payoff:

C(K, T) = e−rT EQ [P(S(t), K)].

Here P(S(t), K) is a payoff function, K is the strike price, T is the time to
maturity, r is a constant interest rate. A European call option provides
the holder of the option with the right to buy the underlying asset by a
certain date for a given price K. It has a payoff



^

WILMOTT magazine 5

PE = max(ST − K, 0), (3.6)

where ST is the asset price at the maturity.
The payoff function for a geometric average Asian call option with

asset prices in the average at n equally spaced time points is

PA = max(S̄ − K, 0), (3.7)

where S̄ is a geometric average: S̄ = (
∏n

i=1 Si)
1/n, Si is the asset price at

time ti = iT/n, 1 ≤ i ≤ n.

MC simulation of European style options is reduced to estimation of
multidimensional integrals. For example, for the standard algorithm
the price of a geometric average Asian call option can be written as the
following n-dimensional integral:

C = e−rT

∫
Hn

max[0, (

⎡
⎣ n∏

i=1

S0 exp[(r − σ 2

2
)ti + σ

√
T

n

i∑
j=1

�−1(uj)]

⎤
⎦

1/n

− K)]du1 . . . dun.

Here �−1(u) is an inverse cumulative function of a normal distribution,
{ui} are uniformly distributed in a unit hypercube Hn variates.

In a general case the MC method approximates the expectation of the
derivative’s payoff with a simple arithmetic average of payoffs taken over
a finite number N of simulated price paths:

CN = e−rT

[
1

N

N∑
i=1

P(S0, S(i)
1 , · · · , S(i)

T , K)

]

For the case of a European call this formula has the following form 
( Jaeckel 2002, Wilmott 2005):

CN = 1

N

N∑
i=1

C(i) = e−rT

[
1

N

N∑
i=1

max(S(i)
T − K, 0)

]
.

Global SA can be used for analysis of option pricing problems by
quantifying the variation in the output variables to the variation of the
input variables. This method is presented in the next section.

4 Global sensitivity analysis
Many practical problems deal with functions of a very complex structure.
Global Sensitivity Analysis (SA) can provide information on the general
structure of a function by quantifying the variation in the output variables
to the variation of the input variables.

Consider an integrable function f(x) defined in the unit hypercube Hn.

It can be expanded in the following form:

f (x) = f0 +
n∑

s=1

∑
i1 <...<is

fi1 ...is
(xi1

, . . . , xis
) (4.1)

Expansion (4.1) is a sum of 2n components. It can also be presented as

f (x) = f0 +
∑

i

fi(xi) +
∑
i<j

fij(xi, xj) + . . . + f12...n(x1, x2, . . . , xn).

Each of the components fi1 ...is
(xi1

, . . . , xis
) is a function of a unique subset

of variables from x. The components fi(xi) are called first order terms,
fij(xi, xj) - second order terms and so on.
It can be proven (Sobol’, 1990 ) that the expansion (4.1) is unique if∫ 1

0
fi1 ...is

(xi1
, . . . , xis

)dxik
= 0, 1 ≤ k ≤ s, (4.2)

in which case it is called a decomposition into summands of different
dimensions. This decomposition is also known as the ANOVA (ANalysis
Of VAriances) decomposition. The ANOVA decomposition is orthogonal,
i.e. for any two subsets u �= v an inner product

∫ 1

0
fu(x)fv(x)dx = 0.

It follows from (4.1) and (4.2) that

∫ 1

0
f (x)dx1 . . . dxn = f0,

∫ 1

0
f (x)

∏
k �=i

dxk = f0 + fi(xi),

∫ 1

0
f (x)

∏
k �=i,j

dxk = f0 + fi(xi) + fj(xj) + fi,j(xi, xj)

(4.3)

and so on.
For square integrable functions, the variances of the terms in the

ANOVA decomposition add up to the total variance of the function

σ 2 =
n∑

s=1

n∑
i1 <···<is

σ 2
i1 ...is

, (4.4)

where σ 2
i1 ...is

= ∫ 1
0 f 2

i1 ...is
(xi1

, . . . , xis
)dxi1

, . . . , xis
.

Sobol’ defined the global sensitivity indices as the ratios

Si1 ...is
= σ 2

i1 ...is
/σ 2.

All Si1 ...is
are non negative and add up to one

n∑
s=1

∑
i1 <...<is

Si1 ...is
= 1.

Si1 ...is
can be viewed as a natural sensitivity measure of a set of variables

xi1
, . . . , xis

. It corresponds to a fraction of the total variance given by
fi1 ...is

(xi1
, . . . , xis

). For example, S1 is the main effect of a variable x1, S12 is a
measure of interactions between x1 and x2( i.e. that part of the total vari-
ance due to parameters x1 and x2 which cannot be explained by the sum
of the effects of parameters x1 and x2 alone ) and so on. An analysis of Si1 ...is

provides sufficient information about the structure of a corresponding
function. For functions of an additive structure, only the low order sensitivity
indices are important. In an extreme case in which there is no interaction
among the input variables

f (x) = f0 +
∑

i

fi(xi)

^
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all higher order sensitivity indices are equal to zero and

n∑
s=1

Si = 1.

In the general case all global sensitivity indices can be important. Their
straightforward calculation using the ANOVA decomposition would result
in 2n integral evaluations of the summands fi1 ...is

(xi1
, . . . , xis

) using (4.3) and
2n integral evaluations for calculations of σ 2

i1 ...is
(4.4). For high dimensional

problems such an approach is impractical. For this reason Sobol’ ( 1990 ) 
introduced sensitivity indices for subsets of variables and the total sensitivity
indices. Consider two complementary subsets of variables y and z:

x = (y, z).

Let y = (xi1
, . . . , xim

), 1 ≤ i1 < . . . < im ≤ n, K = (i1, . . . , im). The variance
corresponding to y is defined as

σ 2
y =

m∑
s=1

∑
(i1 <···<is)∈K

σ 2
i1 ...is

.

σ 2
y includes all partial variances σ 2

i1
, σ 2

i2
, . . . , σ 2

i1 ...is
such that their subsets

of indices (i1, . . . , is) ∈ K. The total variance (σ tot
y )2 is defined as

(σ tot
y )2 = σ 2 − σ 2

z

(σ tot
y )2 consists of all σ 2

i1 ...is
such that at least one index ip ∈ K while the

remaining indices can belong to the complimentary to K set K̄. The
corresponding global sensitivity indices are defined as

Sy = σ 2
y /σ 2,

Stot
y = σ 2

tot/σ
2.

Stot
y = 1 − Sz, Stot

y − Sy accounts for all interactions between y and z.
One of the most important results obtained by Sobol’ is an effective

way of computing sensitivity indices ( see ( see Sobol’ 2001 for details).
The important indices in practice are Si and Stot

i . Their knowledge in
most cases provides sufficient information to determine the sensitivity of
the analyzed function to individual input variables. The use of Si and Stot

i

reduces the number of index calculations from O(2n) to just O(2n).
Extreme cases are

• Stot
i = 0 means that f(x) does not depend on xi (in this case Si is also

equal to 0);
• Si = 1 means that f(x) depends only on xi ( in this case Stot

i is also
equal to 1);

• Si = Stot
i corresponds to the absence of interactions between variable

xi and other variables.

The notion of the “effective dimension” was introduced Caflisch et. al
(1997). Let |u| be a cardinality of a set u. Then the effective dimension of

f(x) in the superposition sense is the smallest integer dS such that

∑
0<|u|<ds

Su ≥ 0.99. (4.5)

The threshold 0.99 is arbitrary. Condition (4.5) means that the function
f(x) is almost a sum of dS – dimensional functions. The effective dimension
in the truncation sense dT is defined as

∑
u⊆{1,2,...,dT }

Su ≥ 0.99 (4.6)

The value dS does not depend on the order in which the input variables
are sampled, while dT does. It was suggested that the efficiency of QMC
methods on high dimensional problems can be attributed to the low 
effective dimension of the integrand (in one or both of the senses), 
although no formal proof was given. By reducing the effective dimension,
a higher efficiency of QMC integration can be achieved. One example of
such an approach is a simulation driven by Brownian motion. By changing
the order in which the variables are sampled from LDS the effective dimen-
sion can be reduced and thus the accuracy can be significantly improved.
Unfortunately, a straightforward evaluation of the effective dimensions
from their definitions (4.5), (4.6) is not practical in the general case as it
would require the calculation of all 2n components Su. Owen introduced
the dimension distribution for a square integrable function ( Owen, 2003).
The effective dimension can be defined through a quantile of the dimen-
sion distribution but such quantiles are still hard to estimate. Global SA
offers a general practical way to predict the efficiency of QMC methods.

5 Numerical results
In this section we present the numerical results from simulations of
prices of European and Asian call options. The simulations are performed
to show the difference between the convergence of MC and QMC methods
with the standard and the Brownian Bridge discretization schemes.

5.1 Pricing of European call

The following parameters were used for simulation: S0 = 100, K = 100,

r = 0.05, σ = 0.2, T = 0.5. An exact Black-Scholes value of the option
price is 6.89. The number of time steps used in the simulation, n = 32.

The European call option follows a path-independent process and we
only need to simulate the terminal asset price. However, here we simu-
late the entire price path using a discrete approximation to demonstrate
the difference in the performance of different techniques.

Fig. 1 shows the results of simulation of a European call option price
versus the number of paths N obtained using MC and QMC method with
standard and Brownian Bridge discretizations. The Mersenne Twister gen-
erator, which is considered to be one of the most efficient uniform random
number generators was used for MC simulation (Mersenne Twister, 2007).
The Sobol’ sequence generator SobolSeq was used for QMC simulations
(SobolSeq, 2007). Results of MC simulation show that simulated solution
slowly convergences to the exact solution but the convergence curve is
highly oscillating. In contrast, QMC convergence is practically monotonic
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which makes on-line error approximation possible. In the case of QMC
method with the Brownian bridge construction convergence is much
faster than that for the standard discretization; however, the type of dis-
cretization does not effect the convergence in the case of MC method.

Fig. 2 shows the root mean square error (RMSE) versus the number of
paths for same methods. To reduce the scatter in the error estimation the
values of root mean square errors

ε =
(

1

L

L∑
l=1

(C − C(l)
N )2

)1/2

,

were averaged over L = 50 independent runs. Here C(l)
N is an estimated

option value on l-th run for N-paths replications. For the MC method all
runs were statistically independent. For QMC integration for each run a
different part of the Sobol’ sequence was used.

The results show the superior performance of the QMC approach with
the Brownian Bridge discretization. The convergence rate for the Brownian
Bridge discretization decreases as 1/N0.88 , while for the standard 
discretization this rate is only 1/N0.66 and for MC it is ∼ 1/N0.49 , which is
very close to a theoretically predicted limit (2.4).

5.2 Pricing of Asian call with geometric averaging.

The Asian call option follows a path-dependent process. Two sets of
parameters were used for simulation:

A ( low dimensional case ): S0 = 100, K = 100, r = 0.05, σ = 0.2,
t = 0.5, number of discrete time steps n = 32. Exact Black-Scholes
Value of the option price is 3.84. 

B ( high dimensional case ): S0 = 100, K = 100, r = 0.05, σ = 0.2,

T = 1.0, number of discrete time steps n = 252. Exact Black-Scholes Value
of the option price is 5.56.

Fig. 3 shows the results of simulation of an Asian call price versus the
number of paths obtained using MC and QMC method with standard
and Brownian Bridge discretizations ( case A ). Qualitatively, the results

are similar to the case of a European call, that is the Brownian bridge
construction provides much better convergence when using Sobol’ 
sequence sampling than the standard discretization or the MC method.

Fig. 4 shows RMSE versus the number of paths. The convergence rate
of the QMC approach based on Sobol’ sequences with the Brownian
Bridge discretization follows 1/N0.85 , for the standard discretization
when using Sobol’ sequence sampling this rate is 1/N0.7 and for MC it is
only ∼ 1/N0.49 .

To investigate the dependence of MC and QMC methods on dimen-
sionality, we considered case B with 252 time steps. Fig. 5 shows RMSE
versus the number of paths for this case. Results show that the conver-
gence rate for the Brownian Bridge discretization does not practically

TECHNICAL ARTICLE 1

Fig. 1 European call price versus the number of paths obtained using MC and
QMC method with standard and Brownian Bridge discretizations.
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Fig. 2 Log-log plot of the root mean square error versus the number of paths
for QMC method with standard and Brownian Bridge discretizations and for
the MC method.
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Fig. 3 Asian call price versus the number of paths obtained using MC and QMC
method with standard and Brownian Bridge discretizations. Case A ( n = 32 ).
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depend on dimensionality, while for the standard discretization the
convergence rate decreases from 1/N0.7(n = 32) to 1/N0.56(n = 252) and
it becomes close to the MC convergence rate 1/N0.5.

An important factor in the comparison of methods is the overall
computation time. It can be seen from the results that applying QMC
method with standard discretization reduces the number of required
simulations by 10 times compared to MC ( case A ). Combining the effec-
tive dimension reduction technique achieved via the Brownian bridge
discretization, together with QMC sampling cuts the computational effort
further to one-hundredth of that required when using MC. It is important
to note, that the Sobol’ sequence numbers are generated considerably
faster than many other LDS and even faster than generation of pseudo-random
numbers by known generators.

5.3 Global Sensitivity Analysis of the standard dis-
cretization and the Brownian Bridge construction.

To understand why the standard and Brownian bridge discretizations
have different efficiencies, we applied global SA to payoff functions ( 3.6),
(3.7), which we write explicitly as functions of the set of normal variables
{Zi}. For the case of a European call option the payoff function is

PE{(Zi}) = max(ST({Zi}) − K, 0)

Fig. 8 shows values of first order sensitivity indices Si and total sensi-
tivity indices ST

i versus time step i for standard discretization with
n = 32. The points are linked for clarity by broken lines. Slight oscilla-
tions in the values are the result of MC approximations of sensitivity
indices values. It can be seen that all variables {Zi} are equally important.
The ratio Si/ST

i is close to 0.01 which means that interactions play impor-
tant role and the effective dimension for this type of discretization is
close to the real dimension n.
The situation is very different for the Brownian bridge discretization:
S1 = ST

1 = 1 and Si = ST
i = 0, 1 < i ≤ n. It means that the effective dimen-

sion in the truncation sense for this discretization dT is equal to 1.
For the case of an Asian call option we analyzed the payoff functions is

PA({Zi}) = max(S̄({Zi}) − K, 0)

Figures 9 and 10 show values of total sensitivity indices versus time step
index i for an Asian call option with n = 32 discretely sampled time
steps. The points are linked for clarity by broken lines. For the standard
discretization total sensitivity indices slowly decrease with the increase
of the time step index i. For the Brownian bridge discretization the total
sensitivity indices of the first few variables are much larger than those

Fig. 4 Log-log plot of the root mean square error versus the number of paths
for QMC and MC methods. Asian call, case A (n = 32).
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Fig. 5 Log-log plot of the root mean square error versus the number of paths
for QMC and MC methods. Asian call, case B (n = 252).
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Fig. 8 First order S i and total sensitivity indices S i
T versus time step i. European

call option, standard discretization, n = 32.
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of the subsequent variables. They also decrease more rapidly than total
sensitivity indices for the standard discretization. In accordance with
(3.4) the first two total sensitivity indices for the Brownian bridge are
considerably larger than those for the standard method. It results in par-
ticular in the much higher value of the sum of the first order sensitivity
indices for the Brownian bridge discretization than that for the stan-
dard discretization (Table 1 ).

Results presented in Table 1 also show that the contribution of the first
order terms in the ANOVA representation for the standard discretization is
small and it decreases with the increase of the number of steps n. As a result
the importance of higher order interactions grows with n. In contrast, for
the Brownian Bridge discretization the sum of the first order sensitivity
indices is practically independent of n. The ratio S1/

∑n
i=1 Si = 0.98, which

means that for the Brownian Bridge discretization the effective dimension
in the truncation senses is close to 1. In the superposition sense it is larger
than 1 as interactions between variables are somewhat important:
S1/ST

1 = 0.62, Si/ST
i ≈ 0.15, 1 < i ≤ n.

The initial coordinates of LDS are much better distributed than the
later high dimensional coordinates ( Sobol’ et. al.. 1992, Caflisch et. al.
1997 ). As follows from global SA for the Brownian bridge discretization
the low index variables are much more important than higher index
variables. The Brownian bridge discretization uses low well distributed
coordinates from each n-dimensional LDS vector point to determine
most of the structure of a path and reserves the later coordinates to fill
in fine details. In other words, well distributed coordinates are used for
important variables and higher not so well distributed coordinates are
used for far less important variables. It results in a significantly im-
proved accuracy of QMC integration. In contrast, the standard construc-
tion does not account for the specifics of LDSs distribution properties.

6 Conclusions
The Brownian bridge discretisation of the Brownian path results in signifi-
cant improvement of the accuracy of QMC especially when the number of
time steps n is large. Global SA offers an efficient and general approach for
analysis and reduction of problem complexity. It reveals that the variance
of the samples generated for the Brownian path slowly decreases with time
step index for the standard discretisation for the case of an Asian call and
it is constant for the case of a European call. The higher order interactions
in the ANOVA decomposition of payoff functions are very important.
Therefore, the effective dimensions for this discretisation is close to the
real dimension.

For the Brownian bridge discretisation the sensitivity indices of the first
few variables are much larger than those of the subsequent variables.
Application of the Brownian bridge discretization greatly reduces the effec-
tive dimension in the truncation sense and consequently increases the effi-
ciency of QMC. Its efficiency does not depend on the problem
dimensionality. Although the standard discretisation with QMC sampling
is superior to MC, the convergence rate of the QMC method is much lower
than that of the Brownian bridge discretisation and it decreases as dimen-
sionality grows.

Although for easiness of comparison we considered options which
have closed-form solutions, the presented techniques can be applied for
any path dependent options.
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Fig. 9 Total sensitivity indices S i
T versus time step i. Asian call, nn == 32..
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Fig. 10 Log of total sensitivity indices S i
T versus time step number i. Asian call,

n = 32.
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Table 1. Sum of the first order sensitivity indices for
the standard and Brownian Bridge discretizations
for various n

n Option Value 
∑

i
Si Stand. 

∑
i

Si BB

8 4.13 0.102 0.41
16 3.94 0.042 0.38
32 3.84 0.022 0.37
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