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2 ANOVA-Decomposition
We shall consider square integrable functions f (x), x = (x1, . . . , xn),
defined in the unit hypercube 0 ≤ x1 ≤ 1, . . ., 0 ≤ xn ≤ 1. In the follow-
ing text integrals written without limits of integration are from 0 to 1 in
each variable.

Definition. The representation of f (x) in a form

f (x) = f0 +
n∑

s=1

∑
i1<···<is

fi1 ...is

(
xi1
, . . . , xis

)
(1)

is called ANOVA-decomposition if

f0 =
∫

f (x) dx, (2)

1 What is Global Sensitivity Analysis
Consider the mathematical model described by a function

u = f (x),

where the input x = (x1, . . . , xn) is defined in a certain region G, and the
output u is a real value. Traditional sensitivity analysis that can be called
local, is applied to a specified solution, say u∗ = f (x∗). The sensitivity of u∗

with respect to the input can be measured using the derivatives

(∂ f /∂xi)x=x∗ .

In the global sensitivity approach individual solutions are not consid-
ered. The function f (x) in G is studied so that the influence of different
variables and their subsets, the structure of f (x) and possible approxima-
tions, etc can be analyzed A. Saltelli, K. Chan and M. Scott (2000) .

Abstract: This is a review of global sensitivity indices that were introduced in I.M. Sobol’ (1990). These indices allow to analyze numerically the structure of a nonlinear
function defined analytically or by a “black box”. As an example the Brownian bridge is considered and an example of the application of global sensitivity indices in finance
is presented.
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and
1∫

0

fi1 ...is
dxip = 0 for 1 ≤ p ≤ s. (3)

Here 1 ≤ i1 < i2 < · · · < is ≤ n, 1 ≤ s ≤ n .
The word ANOVA comes from Analysis of Variances. The explicit form

of (1) is

f (x) = f0 +
∑

i

fi(xi) +
∑
i<j

fi j(xi, xj) + · · · + f12...n(x1, x2, . . . , xn).

One can easily prove that conditions (2) and (3) define uniquely all the
terms in (1). Indeed, integrating (1) over all variables except xi we obtain∫

f (x)
∏
p �=i

dxp = f0 + fi(xi).

Thus all one-dimensional terms fi(xi) are defined. To define the two-
dimensional terms fij(xi, xj)we integrate (1) over all variables except xi and xj:∫

f (x)
∏
p �=ij

dxp = f0 + fi(xi) + fj(xj) + fij(xi, xj).

And so on. The last term f12...n(x1, x2, . . . , xn) is defined by (1).
An important property of (1) is the orthogonality of its terms:∫

fi1 ...is
fk1 ...kl

dx = 0,

if (i1, . . . , is) �≡ (k1, . . . , kl). This is a direct consequence of (3).

Variances
Constants

Di1 ...is
=

∫
f 2
i1 ...is

dxi1
. . . dxis

are called variances.

D =
∫

f 2(x) dx − f 2
0

is the total variance.
If x were a random point uniformly distributed in the hypercube,

these constants would be real variances.
Squaring (1) and integrating over the hypercube we obtain the relation

D =
n∑

s=1

∑
i1<···<is

Di1 ...is
. (4)

The variance Di1 ...is
shows the variability of fi1 ...is

. For piecewise continuous
fi1 ...is

one can assert that Di1 ...is
= 0 if and only if fi1 ...is

(xi1
, . . . xis

) ≡ 0.
For a more or less complex function f (x), it is impossible to find mul-

tidimensional terms of (1). On the contrary, the variances Di1 ...is
can be

numerically estimated directly from values of f (x).

3 Global Sensitivity Indices
Definition. A global sensitivity index is the ratio of variances

Si1 ...is
= Di1 ...is

/D. (5)

It follows from (4) that
n∑

s=1

∑
i1<···<is

Si1 ...is
= 1. (6)

Clearly all sensitivity indices are nonnegative, an index Si1 ...is
= 0 if and

only if fi1 ...is
≡ 0.

The following assertion is more or less evident: the function f (x) is a
sum of one-dimensional functions if and only if

n∑
i=1

Si = 1. (7)

One-dimensional sensitivity indices Si were used in some papers for
ranking of the input variables xi . However, a more detailed analysis
requires the use of total sensitivity indices that will be introduced in the
next section.

4 Global Sensitivity Indices 
for Subsets of Variables

Consider an arbitrary subset of variables xk1
, . . . , xkm

, where 1 ≤ k1 <

k2 < · · · < km ≤ n and 1 ≤ m ≤ n − 1. We will denote it by one letter
y = (xk1

, . . . , xkm
), and let z be the set of n − m complementary variables;

so that x = (y, z). The set of indices k1, . . . , km will be denoted by K .
Two types of sensitivity indices for the set y are introduced:

Definitions.

Sy =
∑

Si1 ,...,is
,

where the sum is extended over all sets i1, . . . , is ∈ K ;

St0 t
y =

∑
Si1 ,...,is

,

where the sum is extended over all sets i1, . . . , is with at least one index
ip ∈ K; clearly, 0 ≤ Sy ≤ St0 t

y ≤ 1.
The first of the two definitions can be applied for defining Sz . Then

St0 t
y = 1 − Sz and similarly St0 t

z = 1 − Sy .
An equivalent approach is to introduce a mixed sensitivity index

Sy,z = 1 − Sz − Sy . Then St0 t
y = Sy + Sy,z , St0 t

z = Sz + Sy,z .
The most informative are the extreme cases:

A) Sy = St0 t
y = 0 if and only if the function f (x) does not depend on y.

B) Sy = St0 t
y = 1 if and only if the function f (x) does not depend on z;

(the function f (x) is assumed to be piecewise continuous).

If the set y consists of one variable y = (xi) then Sy = Si while St0 t
y = St0 t

i

is the sum of all Si1 ,...,is
that contain ip = i.

Example.

Let f = f (x1, x2, x3).
If y = (x1) then Sy = S1 , St0 t

y = S1 + S12 + S13 + S123 .
If y = (x1, x2) then z = (x3). Clearly, Sy = S1 + S2 + S12 , Sz = S3 ,

St0 t
y = S1 + S2 + S12 + S13 + S23 + S123 = 1 − S3 .

^
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A major advantage of the theory is the somewhat unexpected fact
that it is unnecessary to compute sums in the definitions of Sy and St0 t

y :
both these quantities (or more accurately speaking, the corresponding
variances Dy and Dt0 t

y ) can be computed directly from values of f (x) at spe-
cially selected random or quasi-random points.

5 Integral Representations
for Dy and Dt0t

y
Denote by Dy and Dt0 t

y sums of Di1 ...is
that correspond to the sums in the

definitions of Sy and St0 t
y . Then

Sy = Dy

D
, St0 t

y = Dt0 t
y

D
.

Let x and x′ be independent variables defined in the same hypercube (or
consider the product of two hypercubes). Similarly to x = (y, z) we will
write x′ = (y′, z′).

Theorem 1.

Dy =
∫

f (x)f (y, z′) dxdz′ − f 2
0 .

Proof. The integral on the right hand side can be transformed:∫
dy

∫
f (y, z) dz

∫
f (y, z′) dz′ =

∫
dy

[∫
f (y, z) dz

]2

.

Substituting (1) into the inner integral and integrating over dz we
retain only terms depending on y and f0 . They are squared and inte-
grated over dy.

Thus, we obtain Dy + f 2
0 .

Theorem 2.

Dt0 t
y = 1

2

∫ [
f (x) − f (y′, z)

]2
dxdy′.

Proof. The expression on the right hand side is equal to∫
f 2(x) dx −

∫
f (x)f (y′, z) dxdy′.

According to Theorem 1, this is equal to∫
f 2(x) dx − (

Dz + f 2
0

) = D − Dz

6 A Monte Carlo Algorithm
For the k-th trial we generate two m-dimensional random points ηk and η′

k

and two (n − m)-dimensional random points ζk and ζ ′
k . Then we compute

the function f (y, z) at three points: f (ηk, ζk), f (ηk, ζ
′
k) and f (η′

k, ζk).
Four estimators are computed: ϕk = f (ηk, ζk), ϕ2

k , ψk = ϕk f (ηk, ζ
′
k) and

χk = 1
2

[
ϕk − f (η′

k, ζk)
]2

.

After N independent trials at N → ∞
1

N

N∑
k=1

ϕk
P−→ f0,

1

N

N∑
k=1

ϕ2
k

P−→ D + f 2
0 ,

1

N

N∑
k=1

ψk
P−→ Dy + f 2

0 ,

1

N

N∑
k=1

χk
P−→ Dt0 t

y .

A quasi-Monte Carlo estimation of f0, D, Dy and Dt0 t
y is also possible.  For

the trial number k we select one 2n-dimensional quasi-random point
Q k = (

qk
1, . . . , qk

2n

)
and define ηk = (

qk
1, . . . , qk

m

)
, ζk = (

qk
m+1, . . . , qk

n

)
, η′

k =(
qk

n+1, . . . , qk
m+n

)
, ζ ′

k = (
qk

n+m+1, . . . , qk
2n

)
.

More information on the computation algorithms can be found in
I.M. Sobol’ (2001).

7 Low Dimensional Approximations
of f(x)

According to H. Rabitz, O.F. Alis, J. Shorter and K. Shim (1999) very often
in mathematical models f (x) low order interactions of input variables
have the main impact upon the output. In such cases a low dimensional
approximation f (x) ≈ hL(x), L � n, where

hL(x) = f0 +
L∑

s=1

∑
i1<···<is

fi1 ...is
(xi1

, . . . , xis
)

can be rather efficient. The construction of such approximations is discussed
in H. Rabitz, O.F. Alis, J. Shorter and K. Shim (1999) and I.M. Sobol’ (2003).

We will use the scaled L2 distance for measuring the error of an approx-
imation f (x) ≈ h(x):

δ(f , h) = 1

D

∫
[ f (x) − h(x)]2 dx.

If the crudest approximations h(x) ≡ const are considered, the best result
is obtained at h(x) ≡ f0 ; then δ(f , f0) = 1. Hence, good approximations are
the ones with δ � 1.

Theorem 3. If f (x) is approximated by hL(x), then

δ(f , hL) = 1 −
L∑

s=1

∑
i1<···<is

Si1 ,...,is
.

Proof. The difference f (x) − hL(x) is squared and integrated:∫
[ f (x) − hL(x)]

2 dx =
n∑

s=L+1

∑
i1<···<is

Di1 ,...,is
.

The result is divided by D and the relations (4) and (5) are used.
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8 Fixing Unessential Variables
The approximations hL(x) of the preceding section were low dimensional
but the number n of variables remained unchanged. Here we consider
the case when several of the input variables have little influence on the
output. A common practice is to fix somehow these unessential vari-
ables. Let y be the set of important variables and z the set of complemen-
tary ones. The set z can be called unessential if St0 t

z � 1.
Let z0 be an arbitrary value of z in the (n − m)-dimensional unit hyper-

cube. As an approximation for f (x) ≡ f ( y, z) the function h = f ( y, z0) can
be suggested. The approximation error δ( f , h) depends on z0 and shall be
written as δ(z0) ≡ δ( f , h). The following theorem shows that δ(z0) is of
the order of St0 t

z .

Theorem 4. For an arbitrary z0

δ(z0) ≥ St0 t
z ,

but if z0 is random and uniformly distributed, then for an arbitrary ε > 0
with probability exceeding 1 − ε

δ(z0) <

(
1 + 1

ε

)
St0 t

z .

The proof of Theorem 4 can be found in I.M. Sobol’ (1990). Here we shall
only mention a corollary for ε = 1/2:

P
{
δ(z0) < 3St0 t

z

} ≥ 0.5.

The very first problem solved with the aid of global sensitivity indices was
a technical one. The model depended on 35 variables, and it was defined
by a computer code. The designers assumed that 12 of these variables were
unessential. They were satisfied when the global sensitivity approach pro-
duced the result St0 t

z = 0.02, here z is a subset of unessential variables).

9 Improved Computation Schemes
A. Saltelli showed that in problems in which several sensitivity indices
are computed simultaneously, the algorithm of Section 6 can be
improved A. Saltelli (2002). The main idea of improvement looks very
innocently: both values f (x) and f (x′) should be used.

Theorem 1 can be applied to the subset z. Then

Dz =
∫

f (x′)f (y, z′) dy dx′ − f 2
0

and

Dtot
y = D − Dz,

therefore both indices Sy and Stot
y can be computed using three values:

f (x), f (x′) and f (y, z′). Only one of these values depends on the choice of
the set y, while the computational algorithm described in Section 6
included two such values, namely (y, z′) and f (y′, z).

Consider the problem of estimating all one-dimensional indices Si

and Stot
i , 1 ≤ i ≤ n. A Monte Carlo algorithm similar to the one presented

in Section 6 which would require n + 2 model evaluations for each trial:
f (x), f (x′) and f (x′

1, . . . , x′
i−1, x′

i, x′
i+1, . . . , x′

n), 1 ≤ i ≤ n can be formulated
(a direct use of the algorithm from Section 6 would require 2n + 1 model
evaluations.)

Moreover, these n + 2 model evaluations can be used for computing
all two-dimensional indices Sij . Indeed, let yij be the set (xi, xj). It follows
from Theorem 1 that

Dyij
=

∫
f (. . . , xi, . . .)f (. . . , xj, . . .) dx′ dxi dxj − f 2

0 .

Here the omitted variables are the coordinates of x′. The two arguments
of f differ in two positions only, namely xi and xj.

Further, Dij = Dyij
− Di − Dj and Sij = Dij/D.

For more details see A. Saltelli (2002).

10 Remarks on the Case of Random
Input Variables

Assume that x1, . . . , xn are independent random variables with distribu-
tion functions F1(x1), . . . , Fn(xn), and f (x1, . . . , xn) is a random variable
with a finite variance

D = Var(f ).

The definition (1) of ANOVA-decomposition remains true but require-
ments (2) and (3) should be replaced by corresponding expectations:

f0 = Ef (x)

and
∞∫

−∞
fi1 ,...,is

dFip (xip ) = 0 for 1 < p < s.

In this case the variances Di1 ,...,is
are real variances:

Di1 ,...,is
= Var(fi1 ,...,is

).

Functional relations that include random variables are true with prob-
ability 1.

In F. Campolongo and A. Rossi (2002) it is shown that uncertainty and
sensitivity analysis can be valuable tools in financial applications. A delta
hedging strategy is analyzed. Considered in the paper financial instru-
ment to be hedged is a caplet, which is an interest rate sensitive derivative.
The instrument chosen to hedge the caplet is a forward rate agreement
(FRA). The hedging error is defined as the discrepancy between the value
of the portfolio at maturity and what it would have been gained investing
the initial value of the portfolio at the risk free rate till maturity.

The delta hedging error is considered as a random variable with a cer-
tain distribution centered on zero and the target objective function is the
5th percentile of this distribution (VaR). A Monte Carlo experiment is per-
formed in order to obtain the hedging error empirical distribution and to
estimate its 5th percentile. Uncertainty analysis is then used to quantify

TECHNICAL ARTICLE 1
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the uncertainty in the variable of interest, while sensitivity analysis is
used to identify where this uncertainty is coming from, which is what fac-
tors are causing the value of the maximum loss to be uncertain.

There are seven factors contributing to the uncertainty in this value.
These include: the features of the caplet (resetting time, interest rate agreed
at the outset of the contract, tenor), the parameters of the model (the mean
reverting parameter and the spot rate volatility ), the strategy used to build
the hedging portfolio (represented as a trigger factor describing the type of
movements in the yield curve with respect to which the portfolio is immu-
nized), and the number of times at which the portfolio is updated.

Results for the first order indices showed that nearly 55% of the out-
put variance was due to interaction effects among factors. For models
with such a high nonadditivity, the total indices represent a more mean-
ingful measure to look at. Analysis of the total indices showed that
almost all input factors were similarly important on the output. The
hedging trigger factor was the most important one. As expected, the
caplet resetting time was the less important factor.

11 Example: Brownian Bridge
A) Problem. Consider a Wiener path integral

I =
∫
C

F [x(t)] dwx,

where C is the set of functions x(t) continuous in the interval 0 ≤ t ≤ T
with an initial condition x(0) = 0 The integral can be interpreted as an
expectation

I = EF [ξ(t)] ,

where ξ(t) is a random Wiener process or Brownian motion which starts
with ξ(0) = 0. In practical computations ξ(t) is approximated by random
polygonal functions ξn(t) and expectations

In = EF[ξn(t)]

are estimated by crude Monte Carlo estimators

In,N = 1

N

N∑
k=1

F [ξn,k(t)]

that stochastically converge: In,N
P−→In ; here ξn,k(t) are independent real-

izations of ξn(t).
In Yu.A. Shreider (1996), two algorithms for constructing ξn(t) were

described. In both algorithms the time interval 0 ≤ t ≤ T is divided into n
equal parts and random values of the process ξ(t) at moments t = i

n T are
sampled, 1 ≤ i ≤ n. Each value ξ

(
i
n T

)
requires one random normal variate ζ

(with parameters 0;1). Then adjacent points 
(

i
n T, ξ( i

n T)
)

in the (t, x), plane
are connected by straight lines and thus polygonal line ξn(t) is constructed.

In the first algorithm which is often called Standard the random val-
ues are sampled in the natural order:

ξ

(
1

n
T

)
, ξ

(
2

n
T

)
, . . . , ξ (T) .

In the second algorithm it is assumed that n is an integer power of 2, and
conditional distributions for the middle of a time interval are applied.
The order of sampling is

ξ(T), ξ

(
1

2
T

)
, ξ

(
1

4
T

)
, ξ

(
3

4
T

)
, ξ

(
1

8
T

)
, . . . , ξ

(
n − 1

n
T

)
.

The second algorithm became later known as the Brownian bridge
P. Jaeckel (2002).

The probability distributions for ξn(t) in both algorithms are the same,
hence the variances of F [ξn(t)] are equal, and the corresponding Monte
Carlo estimators are equivalent. However, it was known that in quasi-Monte
Carlo implementations the Brownian bridge is superior to the Standard
algorithm. References can be found in I.M. Sobol’ and S.S. Kucherenko
(2004), where this conclusion was confirmed by sensitivity analysis.

B) Model and its analysis. As a model functional we consider the func-
tional from Yu.A. Shreider 1996:

F [x(t)] =
T∫

0

x2(t) dt.

Assume that T = 1, and the diffusion coefficient in the definition of
Wiener’s measure is 0.5. Then I = 1

2 and the variance Var (F [ξ(t)]) = 1
3 .

For both algorithms the integral

Fn =
∫ 1

0
ξ 2

n (t) dt

can be computed analytically and the result is

Fn =
∑

i

aiζ
2
i +

∑
i<j

aijζiζj,

where ζ1, . . . , ζn are independent values of ζ . The coefficients ai and aij

are different for both algorithms despite the fact that the expectation

In = EFn =
∑

i

ai

and the variance

Var(Fn) = 2
∑

i

a2
i +

∑
i<j

a2
ij

are the same. For example, the coefficients ai at n = 4 are

a1 = 10

48
, a2 = 7

48
, a3 = 4

48
, a4 = 1

48

for the Standard algorithm and

a1 = 16

48
, a2 = 4

48
, a3 = 1

48
, a4 = 1

48
.

for the Brownian bridge.
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The ANOVA-decomposition of Fn is

Fn = In +
∑

i

ai

(
ζ 2

i − 1
) +

∑
i<j

aijζiζj.

There are one-dimensional and two-dimensional terms only and

Si = Var
[
ai(ζ

2
i − 1)

]
Var(Fn)

= 2a2
i

Var(Fn)
.

Table 1 from I.M. Sobol’ and S.S. Kucherenko (2004) contains sums of one-
dimensional sensitivity indices at different n for both algorithms as well
as values of In and variances Var(Fn).

Figure 1: ε versus N at n = 64

Clearly the main contribution to Fn in the Brownian bridge comes
from one-dimensional terms(approximately 72%), while for the Standard
algorithm the role of two-dimensional terms increases with n. As a rule,
in quasi-Monte Carlo, one-dimensional integrals are evaluated with
greater accuracy than integrals of higher dimensions. Therefore, the
Brownian bridge is more accurate than the Standard algorithm.

C) Numerical example. In I.M. Sobol’ and S.S. Kucherenko (2004), the
integral In at n = 64 was estimated. Fig.1 shows integration errors ε
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versus N. To reduce the scatter in error values, the errors were averaged
over K = 50 independent runs:

ε =

 1

K

K∑
p=1

(
Ip
n,N − In

)2
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For Monte Carlo computations  different pseudo-random numbers were
used for each run. For quasi-Monte Carlo computations nonoverlapping
sections of the Sobol sequence were used.

In full agreement with the discussion above, in Monte Carlo both
algorithms produce similar errors. However, in quasi-Monte Carlo the
errors of the  Brownian bridge  are much lower.

From the last five points of each line convergence rates were estimat-
ed. They were ∼ 1/

√
N for both Monte Carlo lines and ∼ 1/N for both

quasi-Monte Carlo lines.

Final Remark
In our example, the sensitivity indices for Fn were evaluated analytically.
In general, Monte Carlo or quasi-Monte Carlo computations should be
used. To avoid a loss of accuracy when f0 is large, use f (x) − c rather than
f (x), with an arbitrary c ≈ f0 .

TABLE 1
n In Var(Fn)

∑
Si Stand

∑
Si BB

4 0.452 0.323 0.4367 0.7207
8 0.479 0.331 0.2361 0.7214

16 0.489 0.332 0.1222 0.7215
32 0.495 0.333 0.0612 0.7215


