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1: Introduction

ÁMonte Carlo simulation in finance has been traditionally focusedon pricing derivatives.
Actually nowadaysmarket and counterparty risk measures, based on multi-dimensional
multi-step Monte Carlosimulation, are very important tools for managingrisk,both on the
front office side (sensitivities,CVA)and on the risk managementside (estimatingrisk and
capital allocation). Furthermore, they are typically required for internal models and
validatedby regulators.

ÁThe daily production of prices and risk measures for large portfolios with multiple
counterpartiesis a computationallyintensivetask,whichrequiresa complexframeworkand
an industrialapproach. It isa typicalhighbudget,higheffort project in banks.

ÁWewill focuson the Monte Carlosimulation,showingthat, despitesomecommonwisdom,
QuasiMonte Carlotechniquescanbe applied, underappropriateconditions,to successfully
improvepriceandriskfiguresandto reducethe computationaleffort.
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2: Monte Carlo and Quasi Monte Carlo
History

The Monte Carlo method was coined in the 1940s by John von Neumann, Stanislaw Ulamand 
Nicholas Metropolis, working on nuclear weapons (Manhattan Project) at Los Alamos National 
Laboratory [JVN51]. Metropolis suggested the name Monte Carlo, referring to the Monte Carlo 
Casino, where Ulam'suncle often gambled away his money [Met87, Wiki]. Enrico Fermiis 
ǎǳǎǇŜŎǘŜŘ ǘƻ ƘŀǾŜ ǳǎŜŘ ǎƻƳŜ άmanual simulationέ ƛƴ ǘƘŜ мфолǎΣ ǿƻǊƪƛƴƎ ƛƴ wƻƳŜ ƻƴ ƴǳŎƭŜŀǊ 
reactions induced by slow neutrons (without publication) [Los66, Met87].

Enrico Fermi
Roma, 1901 ςChicago, 1954

John Von Neumann
Budapest, 1903 ςWashington, 1957

Stanislaw Ulam
Leopolis, 1909 ςSanta Fe, 1984

Nicholas Metropolis
Chicago, 1915 ςLos Alamos, 1999
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2: Monte Carlo and Quasi Monte Carlo
Other «quasi»

ÁQuasi crystal
a structure that is ordered but not periodic. A quasi crystalline pattern 
can continuously fill all available space, but it lacks translational symmetry 
(http://en.wikipedia.org/wiki/Quasicrystal).

ÁQuasi particle
phenomena that occur when a microscopically system such as a solid 
behaves as if it contained different weakly interacting particles in free 
space. For example, the aggregate motion of electrons in the valence 
band of a semiconductor is the same as if the semiconductor contained 
ƛƴǎǘŜŀŘ ǇƻǎƛǘƛǾŜƭȅ ŎƘŀǊƎŜŘ ǉǳŀǎƛ ǇŀǊǘƛŎƭŜǎ ŎŀƭƭŜŘ άƘƻƭŜǎέΦ

ÁQuasi satellite
A quasi satellite's orbit around the Sun takes exactly the same time as the 
planet's, but has a different eccentricity (usually greater).
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ÁThe risk factors dynamicsare described by stochastic differential equations(SDE)

where mis the drift, Sis the Nrf x Nrf variance-covariance matrix, and dW is a Nrfς
dimensional brownianmotion. Model parameters can be calibrated to market quotes (risk 
neutral world measure) or to historical series (real world measure).

ÁWediscretizethe future time axisby choosinga time simulationgrid t = [t1 ,Χ,tNstep ]

ÁThe Monte Carlo scenariosjk := sk(t j) at (discrete) time simulation step t j is a NMCς
dimensional(random)drawof standardbrownianmotions acrossthe time step [t j-1 ,t j]

ÁThe risk factor scenariorijk := rik (t j,sjk) is the value of the risk factor ri at time step t j on
Monte Carloscenariosjk

2: Monte Carlo and Quasi Monte Carlo
Multi -dimensional multi-step MC simulation [1]
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TheMCcomputationof financialquantitiesis based,in general,on a multi-dimensionalmulti-
stepsimulation, proceedingasfollows.

Á for each Monte Carlo scenario s jk

Åfor each time simulation step t j

for each risk factor r i

V simulate the risk factor values r ijk

o for each trade l in the portfolio

V compute the mark to future value v jkl

o loop over portfolio trades l=1,é,Nptf

loop over risk factors i =1,é,Nrf

Åloop over time simulation steps j=1 ,é,Nstep

Á loop over Monte Carlo scenarios k=1,é,NMC

2: Monte Carlo and Quasi Monte Carlo
Multi -dimensional multi-step MC simulation [2]

Risk factor 
value

Mark to 
future 
value
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ÁThemarkto future is the future valuevjkl of the individualtradessurvivedat time step t j.

ÁTheportfolio mark to future Vjk is the sumof the future valuesof all tradesin the portfolio
(we assumelinear combinationof trades). Theaggregationof tradescan follow different
rules,for exampleto accommodatedifferent counterpartieswith different netting sets. The
netting set mark to future Vjkh is the sumof all the tradesin the netting set nh subjectto
the samenetting agreementwith a givencounterparty

ÁNotice that if the l-th trade maturity Tl is smallerthan the time simulationstep t j, the l-th
trade isdeadandthere isnothingto compute,

2: Monte Carlo and Quasi Monte Carlo
Multi -dimensional multi-step MC simulation [3]
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ÁThedimensionof the Monte Carlosimulationis (seee.g. [Jac03])

DMC= nÁof riskfactorsx nÁof time simulationsteps= Nrf x Nstep

ÁTheperformanceof the Monte Carlosimulationdependson
o the numberof riskfactorsNrf ,
o the numberof time simulationstepsNstep ,
o the numberof MCscenariosNMC ,
o the propertiesof (random)numbersxgenerator,
o the speedof convergenceof the MCsimulation,
o the stabilityof the MCsimulation,
o the numberof tradesN andof netting setsNh in the portfolio,
o the computational cost to price each trade with analytical formulas, PDE,or MC

simulations,
o the dependenceof tradeson riskfactors,
o Χ

2: Monte Carlo and Quasi Monte Carlo
Multi -dimensional multi-step MC simulation [4]
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ÁIn particular, notice that the (netting set or portfolio) mark to future Vjk at time step t j

depends,in principle, on all the riskfactors

ÁIn practice, eachtrade and netting set will show a lower effective dimension, due to the
tradeexpirationandto hierarchicaldependencyon riskfactorsasfollows:

o higher sensitivity to primary risk factors
o smaller sensitivity to secondary risk factors
o negligible or null sensitivity to negligible risk factors

Primary risk factors Secondary risk factors Negligible risk factors

Howto takeadvantageof thesefeaturesof the problem?GlobalSensitivityAnalysis!

2: Monte Carlo and Quasi Monte Carlo
Multi -dimensional multi-step MC simulation [5]
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ÁRandomvsdeterministicevents
o Random events are intrinsically unpredictable. 
o Deterministic events are, in principle, predictable. In practice, it depends on our knowledge. 

Determinismis the hypothesis that actually there is no randomness in the universe, only 
unpredictability(that is, our ignorance). 

o According to the Bayesian interpretation of probability, probability can be used to represent a 
lack of complete knowledge of events.

o Random events are very common in our universe. Some examples:
o Radioactive decayof a single unstable nucleus or particle is intrinsically random. Its 

average lifetime is perfectly deterministic. Think to radiocarbon dating.
o Atomic motionƛƴ ŀ Ǝŀǎ ƛǎ ǊŀƴŘƻƳΦ bŜǿǘƻƴΩǎ Ŝǉǳŀǘƛƻƴǎ ƻŦ Ƴƻǘƛƻƴ ŀǊŜ ŘŜǘŜǊƳƛƴƛǎǘƛŎΦ
o Genetic mutationsare random. DNA reproduction is deterministic.

ÁTruerandomnumbersgenerators(TRNGs)
o Random numbers can be produced by appropriate hardware, called True Random Number 

Generators(TRNGs), based on statistically random physical processes, such as quantum 
mechanical effects (e.g. radioactive decay), or thermal noise.

o Random numbers cannot be produced by a computer executing deterministic instructions. 
άAnyone who considers arithmetical methods of producing random digits is, of course, in a 
state of sin.έ όWƻƘƴ Ǿƻƴ bŜǳƳŀƴƴΣ мфрм ώJVN51]).

2: Monte Carlo and Quasi Monte Carlo
Numbers: true random
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ÁPseudo Random Numbers Generators (PRNGs) 
Pseudo random numbers are generated by algorithms called Pseudo Random Number Generators
(PRNGs). PRNGs produce deterministic sequences of numbers that approximates the properties 
of a random sequences. Such sequences are completely determined by a set of initial values, 
called the PRNG's state. Thus, sequences produced by PRNGs are reproducible, using the same 
set of state variables.
ÁMain characteristics of PRNGs:

o Seed: the number used to initialize the PRNG. It must be a random number.
o Periodicity: the maximum length, over all possible state variables, of the sequence without 

repetition. 
o Distribution: distribution of the random numbers generated, generally uniform [0,1).

ÁMost common PRNGs:
o Pioneer PRNGs: Mid Square Method by John Von Neumann in 1946 (see [Jac02]).
o Classical PRNGs: see e.g. [NR02] and [Jac02].
o MersenneTwister: the best at the moment, with the longest period of 106000 iterations. See 

[MT97,JAC02].
ÁMain lessons:

o all PRNGs are flawed by definition.
o know your PRNG: seed, periodicity, limits, etc., never use it as a black box.

2: Monte Carlo and Quasi Monte Carlo
Numbers: pseudo random
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ÁLow Discrepancy Numbersor Quasi Random Numbers (QRN), are such that any sequence of 
these numbers has low discrepancy. Formally, a sequence of d-dimensional numbers in [0,1]d, has 
low discrepancy if the first N points {u1,...,uN} in the sequence satisfy

where D is the discrepancy and c(d) is some constant depending only on d. The key point is that 
low discrepancy is required for any subsequence with N > 1, not for some fixed N.
ÁThe discrepancyof a sequence {u1,...,uN} is a measure of how inhomogeneouslythe sequence is 

distributed inside the unit hypercube Id=[0,1]d. Formally

2: Monte Carlo and Quasi Monte Carlo
Numbers: low discrepancy  [1]

Discrepancy

Sub-hypercube

Number of draws in Sd
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2: Monte Carlo and Quasi Monte Carlo
Numbers: low discrepancy [2]

The first 1024 points of two-dimensional Sobol sequence. At each stage, the new 
points regularly fill the gaps in the distribution generated at the previous stage. 

Source: Numerical Recipes [NR02]

The first 256 points from a PRNG (top) compared with the 
first 256 points from the 2,3 Sobol sequence (bottom). The 
Sobol sequence covers the space more evenly (red=1,..,10, 

blue=11,..,100, green=101,..,256). Source: [Wikipedia].

Notice how the 
discrepancy of the 

sequence of N QRNs 
is minimized for each 

sub-sequence 
ƴҐмΣΧΣbΣ ǿƛǘƘ 

respect to the PRNs.
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2: Monte Carlo and Quasi Monte Carlo
Numbers: low discrepancy [3]

Á Low Discrepancy Numbers Generators(LDNGs):
as for PRNGs, there are many algorithms to produce 
low discrepancy numbers, the most important being 
(see e.g. [Jac02], [Gla03]):

o Van der Corputnumbers
o Haltonnumbers
o Faure numbers
o Sobol̀ numbers 

Á Sobol̀  Numbers
o use a base of 2 to form successively finer uniform 

partitions of the unit interval, and then reorder the 
coordinates in each dimension. 

o The number of iterations should be taken as 
N=2n for n integer.

o Once well-initialised, they provide :
Áthe lowest discrepancy in lower dimensions
Ácomparable discrepancywith pseudo random 

numbers in higher dimensions

L2 norm discrepancy (y-axis) as a function of the number 
of iterations (x-axis) for various PRNGs and LDNGs, 

in dimension d=2 (up) and d=100 (down). Source: [Jac02].

Ilya Sobolô

Moscow , 

1926 ï
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ÁUniform NGs
Standard NGs produce numbers with a continuous uniform distribution U[a,b], such that the 
probability density function f is constant over the interval [a,b],

ÁNon uniform RNGs
Numbers with any distributionwith probability density f(x)can be produced, in principle, starting 
from the uniform distribution U[0,1]by inverting the following relation

because the cumulative probability functionF(x)is a probability measure, which is uniform on 
[0,1] by definition. Given a number y with uniform distribution U(0,1)we obtain

See e.g. [NR02], [Jac02] and [Gla03] for (a lot of) details.

2: Monte Carlo and Quasi Monte Carlo
Numbers: distribution
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2: Monte Carlo and Quasi Monte Carlo
Lattice integration vs pseudo Monte Carlo vs quasi Monte Carlo [1]

ÁLattice integration
The numerical integration of a given d-dimensional function on a regular grid with Nlattice

points in the hypercube domain of volume Ld has a relative error

ÁPseudo Monte Carlo
The PMC standard error associated to PMC, by the central limit theorem, is 

where „ is the estimated varianceof the simulation. Variance reduction techniques, e.g. 

antithetic variables, affect only the numerator [Gla03].
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2: Monte Carlo and Quasi Monte Carlo
Lattice integration vs pseudo Monte Carlo vs quasi Monte Carlo [2]

ÁQuasi Monte Carlo
The discrepancy of QMC simulation is

Notice that the discrepancy depends on the dimension. Since there is no statistics behind 
low discrepancy sequences, there is no variance estimation. A variance estimation can be 
achieved by multiple simulations with scrambled low discrepancy sequences(randomised
QMC, see [Gla03]).

ÁFollowing [Jac02ϐ άώΧϐ is a misunderstanding in the literature that they begin to fail as and 
when you start using dimensionalities above a few dozensέΦ 

ÁRecently, efficient high dimensional low discrepancy generators have been made available. 
In particular [Broda] proposes SobolΩ ƎŜƴŜǊŀǘƻǊǎ ǿƛǘƘ ŘƛƳŜƴǎƛƻƴ ǳǇ ǘƻ н15 = 32,768.

ÁThe recent financial literature on the subject is focused on pricing analysis (see e.g. 
[Kuc07,Kuc12]), while risk management applicationsare, to our knowledge, much less 
recent and focused on market risk only (see e.g. [Pap98], [Kre98a], [Kre98b], [Mon99]).
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [1]

Input variables Model function Output variable

Without loss of generality we can take VD to be the D-dimensional hypercube, so that

Advantages of GSA w.r.t. other SA approaches:
o It quantifies the effect of varying a given input (or set of inputs) while all other             

inputs are variedas well.
o It provides a measure of interactionamong variables.
o It can be applied also to non-linear models.

ÁRisk measures:
o D = Nrf x Nstep (can be very high!)
o y = portfolio P&L  (VaR, ES),

portfolio value  (EPE/ENE, PFE)

ÁOption pricing:
o D = Nstep (single asset)
o D = Nrf x Nstep (multiple assets)
o y = Price, Greeks
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [2]

ÁANOVA decomposition

The decompositionisuniqueif

In this case terms are orthogonaland are given by integrals involving only f(x). 
For squareintegrablefunctions, the total varianceof  f decomposesas

Partial variances

First order terms Second order terms D-order term
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [3]

ÁSobolΩ ǎŜƴǎƛǘƛǾƛǘȅ indices

o They measure the fraction of variance accounted by
o They sum up to 1
o For s>1they measure interactions among
o One can introduce SobolΩ ƛƴŘƛŎŜǎ ŦƻǊ ǎǳōǎŜǘǎ ƻŦ variablesὛ in order to measure the 

importance of a subset y of  x w.r.t. the complementary subset  z . Moreover, one 
can introduce total effect indicesὛ in order to measure the total contribution of a 

subset y to the total variance[Sob05b].

They can be used to:
o Rank variables in order of importance
o Fix unessential variables
o Reduce model complexity
o Analyze/predict the efficiency of various numerical schemes
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [4]

ÁThe most used SobolΩ ǎŜƴǎƛǘƛǾƛǘȅ ƛƴŘƛŎŜǎ ƛƴ ǇǊŀŎǘƛŎŜ are

ÁSpecial casesare:

o Ὓ πȡǘƘŜ ƻǳǘǇǳǘ ŦǳƴŎǘƛƻƴ ŘƻŜǎƴΩǘ ŘŜǇŜƴŘ ƻƴ ὼ
o Ὓ ρȡthe output function depends only on ὼ

o Ὓ Ὓ ȡinteractions between ὼand other variables are absent
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [5]

ÁSobolΩ ƛƴŘƛŎŜǎ ŀǊŜ ŜȄǇǊŜǎǎŜŘ ŀǎ high-dimensional integrals, so they are usually evaluated 
via MC/QMC techniques. Efficient formulas have been developed, which allow to 
compute SobolΩ ƛƴŘƛŎŜǎ ŦƻǊ ǎǳōǎŜǘǎ ƻŦ ǾŀǊƛŀōƭŜǎ ŘƛǊŜŎǘƭȅ ŦǊƻƳ f(x) , thus avoiding the 
knowledge of ANOVA components [Sob05b]. Furthermore, the computation of Ὓand 

Ὓ can be reduced to ὔ Ὀ ς function evaluations [Kuc11],

where y and z (or ȅΩ and ȊΩ) are two complementary subsets of x (or ȄΩ).
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2: Monte Carlo and Quasi Monte Carlo
Effective dimensions [1]

ÁMany financial problems are high-dimensional, but often not all the variables are equally 
important: effective dimensionswere introduced to quantitatively measure the number of 
most important variables of a model function [Caf97] . 
ÁThe superior efficiency of QMC methods for some high-dimensional problems can be ascribed 

to a reduced effective dimension w.r.t. nominal dimension of the model function f(x).
ÁGSA can be used to compute effective dimensions and, thus, to predict the performance of 

QMC method w.r.t. standard MC, for a given f(x).

ÁDifferent notions of effective dimensions can be introduced:
o The effective dimension in the superposition senseis the smallest dS such that

o The effective dimension in the truncation senseis the smallest dT such that

o The average dimensiondA is defined as 
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2: Monte Carlo and Quasi Monte Carlo
Effective dimensions [2]

ÁThe effective dimension dS ŘƻŜǎƴΩǘdepend on the order of sampling of variables,
while the effectivedimensiondT does.

ÁThe following inequality holds: Ὠ Ὠ .

ÁAll high-dimensionalnumericalexperimentsfound in the literature showthat QMCis more
efficient than MC when the effective dimension (in one or more senses)is small. In
particular[Sob14] suggeststhat QMCcouldbe moreefficient than MCwhenὨ Ṏσ

ÁFunctions f(x) can be classified according to their dependence on variables:

ForTypeA and TypeB functions,QMCis more efficient than MC,for TypeCfunctionsQMC
cannotachievehigheraccuracythan MC. TypeA and TypeB functionsare very commonin
financialproblems,possiblyafter effectivedimensionreduction.
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2: Monte Carlo and Quasi Monte Carlo
Effective dimensions [3]

ÁContraryto MC,QMCefficiencyis sensitiveto the order in which variablesx are sampled
from the LDS. The common explanation is that, since lower coordinates in each D-
dimensionalLDSdraw areparticularlywell distributed, oneshouldusethem to simulatethe
most important variablesand concentrate there most of the variance; moreover, since
lower dimensionalprojectionsof LDS(especiallyfor well initialized{ƻōƻƭΩsequences)are
much better distributed, in the caseof Type B functions, higher-order interaction terms
shouldbe relegatedto later dimension,whoseprojectionsarenot sowell distributed.
ÁTheoptimal samplingorder is not a priori knownfor a givenf(x). In path-dependentoption

pricing, a popularchoiceis to applyBrownianBridgeto the discretizationof the underlying
stochastic process [Caf97]. Some authors report caseswhere Brownian Bridge is not
superiorto standarddiscretization[Pap01].

ÁGSA explains whya given discretization scheme improves QMC convergence and tells if it 
will be superior to MC, at a reasonable computational cost, without actuallycomputingthe 
convergencerate via direct simulations(which would be very time-consuming).

Brownian Bridge discretization of a Brownian motion
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2: Monte Carlo and Quasi Monte Carlo
Error Analysis [1]

Many problems in financial engineering can be reduced to high-dimensional integration of a 
given function f, hence MC/QMC simulation is usually the election method to solve them.

ÁIn order to measure the efficiency of the two techniques, integration error eas a function 
of the number of simulated paths NMC is analysed.
ÁIf V is the exact value of the integral and VN is the simulated value using N paths, the root 

mean square error, averaged on L independent runs, is defined as

In the QMC case, for each run, a different part of the LDS is used. 

ÁIn order to compare the performances of the two techniques we conduct the three 
following analyses:

A. Convergence analysis
B. Monotonicity and stability analysis
C. Speed-up analysis
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2: Monte Carlo and Quasi Monte Carlo
Error Analysis [2]

A. Convergence analysis

ÁMCconvergencerate isknownto be ϳ„Ὢ ὔ irrespectiveof the dimensionality

ÁAn upper bound to QMCconvergencerate is ϳÌÏÇὔ ὔ . It is asymptoticallyfaster
than MCbut it dependson dimensionalityand,for feasibleN, it canbe too slow. However,it
is not observed in practice: integrands with low effective dimension show faster
convergence:

with‌approaching1.

ÁTheroot meansquareerror canbe computedfor different numbersof simulatedpathsand
constantsc andacanbe estimatedfrom linearregression.
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2: Monte Carlo and Quasi Monte Carlo
Error Analysis [3]

B. Monotonicity and stability analysis

ÁNumericaltests present in the literature show that QMCconvergenceis often smoother
than MC: suchmonotonicityandstabilityguaranteehigheraccuracyfor a givenNMC.

ÁIn order to quantifymonotonicityandstabilitywe adopt the followingstrategy:
1. dividethe rangeof path simulationsin n windows,
2. computesamplemeanandsamplevariancefor eachwindow,
3. we propose:

o άlog-ǊŜǘǳǊƴǎέasa measureof monotonicity,and
o άǾƻƭŀǘƛƭƛǘȅέasa measureof stability.

ÁIn this way:
o Monotonicconvergencewill shownon oscillatinglog-return convergingto zero
o Stableconvergencewill showlow andalmostflat volatility
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2: Monte Carlo and Quasi Monte Carlo
Error Analysis [4]

C. Speed-up analysis

ÁSuchmeasure is sometimes considered in the literature [Kre98a]. It allows to quantify the 
computational gainof a method i with respect to a method j . 

ÁIt is defined as

where ὔz ὥ is the threshold number of paths needed to reach and maintaina given 
accuracy a. Speed-Up can be either computed by direct simulation (but it is extremely 
computationally expensive) or extrapolated by the estimated law of the convergence rate 
όōǳǘ ƛǘ ǿƻǳƭŘƴΩǘ ŎŀǇǘǳǊŜ ǳƴŜȄǇŜŎǘŜŘ ŦƭǳŎǘǳŀǘƛƻƴǎ ŘǳŜ ǘƻ ǇƻǎǎƛōƭŜ ƛƴǎǘŀōƛƭƛǘȅύΦ 

ÁWe choose to identify the threshold N* as the first N such that
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3: Prices and sensitivities for selected derivatives
Selected payoffs

The aim of this analysis is to compare the efficiency of QMC w.r.t. PMC in computing prices 
and greeks(Delta, Gamma, Vega) for selected payoffsPwith increasing degrees of complexity, 
using simple dynamical models. In particular we rely on Black-Scholes model, where the 
underlying process S follows a geometric Brownian motion

ÁEuropeanCall:

ÁAsianCall:

ÁDoubleKnock-Out:

ÁCliquet:

where K is the strike price, Bl and Bu the values of the lower and upper barrier, respectively, C 
a local cap and F a global floor. The underlying process is discretized across D simulation dates 
(remember that in the single asset case the number of time simulations steps is equal to the 
dimension of the MC simulation.)
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3: Prices and sensitivities for selected derivatives
Simulation details

ÁScenariosfor the underlying process Sare simulated using:
o MC + antithetic variables+ MersenneTwister generator [MT98]
o QMC + standard discretisation+ SobolSeqgenerator [Broda]
o QMC + brownianbridge discretisation+ SobolSeqgenerator [Broda]
o NMCscenarios as a power of two, to maximise the efficiency of SobolΩLow 

Discrepancy Sequence (LDS)

ÁPricesare computed as averages of the payoff value over MC scenarios.

ÁGreeksare computed via finite differencing using
o Common PRN/LDS for both base and bumpedscenarios
o Centraldifferences

ÁRoot mean square error is computed as an average over L independent runs (using non-
overlapping LDS) w.r.t. a reference value: the latter is given by analytical formulas for 
European and Asian options, or by a simulated value using a sufficiently large (223) number 
of MC scenarios in other cases.

ÁCodes are implemented in MATLAB.
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3: Prices and sensitivities for selected derivatives
European Call: set up

The first test case regards an ATM European call option.

Test #1 specs
Á Risk-free rate: r = 0.03
Á Spot price: Ὓ= 100
Á Volatility: „= 0.3
Á Maturity: T = 1
Á Strike price: K = 100
Á Number of time steps: ὔ = 32

Á Output values: Price, Delta, Gamma, Vega
Á Number of MC/QMC trials for the computation of SI: ὔ ρπ
Á Number of simulated paths: ὔ ςȟὴ ωȟȣȟρψ
Á Number of independent runs: L = 30
Á Increment on finite differences:

o Ὓ‏ ‭Ὓ, ‭ ρπȟρπȟρπ
o „‏ ‭, ‭ ρπȟρπȟρπ
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3: Prices and sensitivities for selected derivatives
European Call: Global Sensitivity Analysis [1]

GSA for Standard Discretization

Price, Delta and Vega are Type-
B functions: in these cases we 
expect that QMC will 
outperform MC.

Gamma is a Type-C function: in 
this case we expect that QMC 
ǿƻƴΩǘ ƻǳǘǇŜǊŦƻǊƳ a/Φ 
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3: Prices and sensitivities for selected derivatives
European Call: Global Sensitivity Analysis [2]

GSA for BB Discretization

Price, Delta, Gamma and Vega 
are Type-A functions: we expect 
that QMC will always 
outperform MC. 

Effective dimensions equal 1: 
this is a trivial result, since the 
payoff explicitly depends only 
on one variable (spot at 
maturity)


