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1: Introduction

AMonte Carlo simulation in finance has been traditionally focused on pricing derivatives
Actually nowadaysmarket and counterparty risk measures basedon multi-dimensional
multi-step Monte Carlosimulatiory are very important tools for managingrisk, both on the
front office side (sensitivities,CVA)and on the risk managemeniside (estimatingrisk and
capital allocation) Furthermore, they are typically required for internal models and
validatedby regulators

AThe daily production of prices and risk measuresfor large portfolios with multiple
counterpartiesis a computationallyintensivetask,whichrequiresa complexframeworkand
anindustrialapproach It isatypicalhighbudget,high effort projectin banks

AWe will focuson the Monte Carlosimulation,showingthat, despitesomecommonwisdom,
QuasiMonte Carlotechniquescanbe applied, underappropriateconditions,to successfully
Improveprice andriskfiguresandto reducethe computationaleffort.
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2: Monte Carlo and Quasi Monte Carlo
History

The Monte Carlo method was coined in the 19409 dyn von Neumanrstanislandlamand
Nicholas Metropolisworking onmuclearweapons(Manhattan Project) at Los Alamos National
Laboratory J\VN5]. Metropolis suggested the naniéonte Carlg referring to the Monte Carlo
Casino, wheré&Jlam'suncle often gambled away his moneyidtS87, \Wik]. Enrico Fermis

ddza LISOUSR (2 mahu@SimdzEice RAF2YVMESa mponax &2 NJ A
reactions induced by slow neutrons (without publicationp§66, Met8}.

John Von Neumann Stanislaw Ulam Nicholas Metropolis Enrico Fermi
Budapest, 1908 Washington, 1957 Leopolis, 190¢ Santa Fe, 1984 Chicago, 1918 Los Alamos, 1999 Roma, 190, Chicago, 1954
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2: Monte Carlo and Quasi Monte Carlo
Other«quasi»

A Quasicrystal X
a structure that is ordered but not periodic. A quasi crystalline patterns TR
can continuously fill all available space, but it lacks translational symrg sz
(http://en.wikipedia.orgMviki/ Quasicrystal ‘©

AQuasi particle

behaves as if it contained different weakly interacting particles in freejes
space. For example, the aggregate motion of electrons in the valencda
band of a semiconductor is the same as if the semiconductor contai
AYyaiaSFcER LRarAagAagSte OKINASR | dz
Quasi-satellite
AQuasi satellite
A guasi satellite's orbit around the Sun takes exactly the same time a Planet
planet's, but has a different eccentricity (usually greater).
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2: Monte Carlo and Quasi Monte Carlo
Multi -dimensional multistep MC simulation [1]

A Theriskfactorsdynamicsare described bystochastiadifferential equations(SDE)
d’l“i(t) = Nz’(ta T)dt + E(t, T) : dW(t), 1=1,,N;g

where ms the drift, S isthe N x N; variancecovariance matrix, andwW is aN G

dimensionabrownianmotion. Model parameterscan be calibrated tonarket quoteg(risk
neutral world measure) or toistorical seriegreal world measure).

A We discretizethe future time axisby choosinga time simulationgridt =[t, ,X tnstep ]

A The Monte Carlo scenarios, = g(t;) at (discrete)time simulation step t; is a Nyc G
dimensionalrandom)draw of standardbrownianmotions acrossthe time step[t; ; ,t;]
Sjk = AWy(t;) = \/t; — tj_1&k,
& ~ NN (0, 1>, k=1,

A Therisk factor scenariory, == ry (t;,S) Is the value of the risk factor r; at time step t; on
Monte Carloscenarios,

riik = 1i(t;,r(t;), Sjr)

~ 1 [tj—1, r(t—1)] + pa [tj—1, m(E—1) | Aty + JALE [t 1, 7 (Ej-1)] - &k
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2: Monte Carlo and Quasi Monte Carlo
Multi-dimensional multistep MC simulation [2]

TheMC computationof financialquantitiesis based,in general,on a multi-dimensionamulti-
stepsimulation proceedingasfollows.

A for each Monte Carlo scenario Sik Risk factor
A for each time simulation step t value
for each risk factor I o O O
V' _simulate the risk factor values i
o for each trade | in the portfolio
\/ compute the mark to future value Vig
o loop over portfolio trades | =1, N, 0
loop over risk factors i=1, 8, O
) A loop over time simulation steps =1, € Ngep ark to
A loop over Monte Carlo scenarios k=1, 5 N future
value
Bianchetti,KucherenkpScoleri Better Pricing and Risk Management
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2: Monte Carlo and Quasi Monte Carlo
Multi-dimensional multistep MC simulation [3]

A Themarkto future isthe future valuevy, of the individualtradessurvivedat time stept;.
ikl = v [ty T (L5, Sik)] -

A Theportfolio markto future Viis the sumof the future valuesof all tradesin the portfolio
(we assumelinear combinationof trades) The aggregationof trades can follow different
rules,for exampleto accommodatdalifferent counterpartieswith different netting sets The
netting set markto future V,, is the sumof all the tradesin the netting set n, subjectto
the samenetting agreementwith a givencounterparty

Ny,
Vikn = Z Vikl, Vik = E Vikn-
h=1

leny,

A Noticethat if the I-th trade maturity T, is smallerthan the time simulationstept;, the I-th
trade isdeadandthere is nothingto compute,

#0, ift; <71 (alive),

v [tg, (¢, sji)] =0, ift; > 1T (dead)
— Yy J '
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2: Monte Carlo and Quasi Monte Carlo
Multi-dimensional multistep MC simulation [4]

AThedimensionof the Monte Carlosimulationis (seee.qg. [Ja®3))
DMC= rAof riskfactorsx nAof time simulationsteps=N;; X Ny,

ATheperformanceof the Monte Carlosimulationdependson
0 the numberof riskfactorsN,

the numberof time simulationstepsN

the numberof MCscenariod\,,

the propertiesof (random)numbersx generator

the speedof convergencef the MCsimulation,

the stability of the MCsimulation,

the numberof tradesN and of netting setsN, in the portfolio,

step

O O O OO0 0O O

simulations,
the dependenceof tradeson riskfactors
X

O© O

the computational cost to price each trade with analytical formulas, PDE,or MC
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2: Monte Carlo and Quasi Monte Carlo
Multi-dimensional multistep MC simulation [5]

Aln particular, notice that the (netting set or portfolio) mark to future Vi at time step t,
depends,n principle on all the riskfactors

ijkh — Z U] [tjvr(tj: Sjk)] .

leny,

Aln practice eachtrade and netting set will show a lower effective dimension due to the
trade expirationandto hierarchicalddependencyon riskfactorsasfollows:
0 higher sensitivity tarimary risk factors
0 smaller sensitivity taecondary risk factors
0 negligible or null sensitivity toegligible risk factors

OVikn - OVien OV Vi

Primary risk factors  Secondary risk factors Negligible risk factors

Howto take advantageof thesefeaturesof the problem? GlobalSensitivityAnalysid

Bianchetti, KucherenkpScoleri Better Pricing and Risk Management

WBS 1 Fixed Income Conference with High Dimensional Quasi Monte Carlo P



2: Monte Carlo and Quasi Monte Carlo
Numbers: true random

A Randomvsdeterministic events
0 Random events areitrinsically unpredictable
0 Deterministic events are, in principle, predictable. In practice, it depends on our knowledge.
Determinisimis the hypothesis that actualityere is no randomness in the universe, only
unpredictability(that is, our ignorance).
0 According to the Bayesian interpretation of probabilitypbability can be used to represent a
lack of complete knowledge of events
0 Random events are very commaon in our universe. Some examples:
0 Radioactive decaof a single unstable nucleus or particle is intrinsically random. Its
average lifetime is perfectly deterministic. Think to radiocarbon dating.
o AtomicmotionAy I FF A A& NIYYR2Y® bSgiz2yQa Sl d
0 Genetic mutationare random. DNA reproduction is deterministic.

A Truerandom numbersgenerators(TRNGS)

0 Random numbers can be produceddyypropriatehardwareg calledTrue Random Number
Generator{TRNGS), based on statistically random physical processes, such as quantum
mechanical effects (e.g. radioactive decay), or thermal noise.

0 Random numbersannot be produced by a computer executing deterministic instructions
dAnyone who considers arithmetical methods of producing random digits is, of course, in a
state of sSik O W2 Ky @2y BEWRYlIYYSEI MbpM ©
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2: Monte Carlo and Quasi Monte Carlo
Numbers: pseudo random

A Pseudo Random Numbers Generators (PRNGS)
Pseudo random numbers are generated by algorithms céliedido Random Number Generators
(PRNGSs). PRNGs produe¢=rministic sequenceef numbers that approximates the properties
of a random sequences. Such sequences are completely determined by a set of initial values,
called the PRNG's state. Thasguences produced by PRNGs are reproduaising the same
set of state variables.
A Main characteristics of PRNGs
0 Seedthe number used to initialize the PRNG. It must be a random number.
0 Periodicity the maximum length, over all possible state variables, of the sequence without
repetition.
o Distributiort distribution of the random numbers generated, generally unif¢on).
A Most common PRNGs
0 Pioneer PRNGMid Square Method by John Von Neumann in 1946 ($2€)f}).
0 Classical PRNCsee e.g.[JJRO] and PacO%}.
o0 MersenneTwister. the best at the moment, with the longest period of 106000 iterations. See
[MT97JACOR
A Main lessons
0 all PRNGs are flawed by definition.
0 know your PRNseed, periodicity, limits, etc., never use it as a black box.
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2: Monte Carlo and Quasi Monte Carlo
Numbers: low discrepancy [1]

A Low Discrepancy Numbear Quasi Random Numbers (QRIlare such that any sequence of
these numbers has low discrepancy. Formally, a sequenceliofiensional numbers if0,1]9, has
low discrepancy if the firdtl points{u,,...,uy} in the sequence satisfy

D}i\/(ul,,,,’uN) < c(d)w

, VN > 1,
where D is the discrepancy and c(d) is some constant depending odlyldwe key point is that
low discrepancy is required for any subsequence With 1 not for some fixedN.

A Thediscrepancyof a sequencéu,,...uy} is a measure of howmhomogeneouslyhe sequence is
distributed inside the unit hypercublé=[0,1F. Formally

d
d _ [ y Wy ooy BN d Discrepancy
DN(ula'“?uN) — Sup N -V (ZB) )
xcld
d
Shx) =1[0,a1) x -+ x [0,2q) CI¢, VUa)=]]wx;,  Subhypercube
j=1
N N d
d :
n[S (:B,ul,...,uN)} = E ]_[uz.esd(m)] = E H]'[’U»j,igmj]’ Number of draws 18!
Bianchetti, KucherenkpScoleri Better Pricing and Risk Management
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2: Monte Carlo and Quasi Monte Carlo
Numbers: low discrepancy [2]
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first 256 points from the 2,3 Sobol sequence (bottom). The The first 1024 points of twdimensional Sobol sequencat each stage, the new
Sobol sequence covers the space more evenly (red=1,..,10, points regularly fill the gaps in the distribution generated at the previous stage.

blue=11,..,100, green=101,..,256). Sourgeikjpedid.

Source: Numerical RecipesRf03]
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2: Monte Carlo and Quasi Monte Carlo
Numbers: low discrepancy [3]

A Low Discrepancy Numbers GeneratqtDNGSs): oot sy
as for PRNGs, there are many algorithms to produce
low discrepancy numbers, the most important being
(see e.g.Jac0}, [Gla0]): - 0.001 priis
o Van derCorputnumbers g N .
o Haltonnumbers | ““““M%;@% <1
o Faure numbers Bl S T R
o Sobol numbers =2
A Sobol Numbers O e e e !
o use a base of 2 to form successively finer uniforr ™ ** == " " =® ™
partitions of the unit interval, and then reorder th ek
coordinates in each dimension. el I R
o The number of iterations should be taken as oo T T
N=2"for n integer. vorn | . Expectation or
o Once wellinitialised, they provide : T Nidenisiter (1988)
A the lowest discrepancy in lower dimensions 7 TR
A comparable discrepanayith pseudo random 1=
numbersin higher dimensions rets SRR SO ——
L, norm discrepancy (gxis) as a function of the numbey_ .. |

of iterations (xaxis) for various PRNGs and LDNGs, = y
in dimension d=2 (up) and d=100 (down). Sourgec(]. 1024 2048 4098 8192 16384 32768 65536
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2: Monte Carlo and Quasi Monte Carlo
Numbers: distribution

A Uniform NGs
Standard NGs produce numbers with a continuous uniform distribudiiarb], such that the
probability density functior is constant over the intervdd,b],

1 1 ]_ foragxgb,
= 1) =
b—a [a,9] b—a

f(x)

0 forax<aorax>hD.

A Non uniform RNGs
Numbers withany distributiorwith probability densityf(x) can be produced, in principle, starting
from the uniform distributionU[0,1] by inverting the following relation

F(x) := [x f(u)du ~ U0, 1],

because theeumulative probability functiol(x)is a probability measure, which is uniform on
[0,1] by definition. Given a numbegrwith uniform distributionU(0,1)we obtain

F(x) =y~ U[0,1],

—1
r=F""(y)~ f.
See e.q.lfJR0O], [JacO}and [51a03 for (a lot of) details.
Bianchetti, KucherenkpScoleri Better Pricing and Risk Management
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2: Monte Carlo and Quasi Monte Carlo
Lattice integration vs pseudo Monte Carlo vs quasi Monte Carlo [1]

A Lattice integration
The numerical integration of a giverdiimensional function on a regular grid Wit ;..
points in the hypercube domain of voluni& has a relative error

C

(N lattice)

€(Njgttice,d) =

alN

APseudo Monte Carlo
The PMC standard error associated to PMC, by the central limit theorem, is

where,, Is the estimated/arianceof the simulation.Variance reduction techniguge.g.
antithetic variables, affect only the numeratcra03.

Bianchetti, KucherenkpScoleri Better Pricing and Risk Management
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2: Monte Carlo and Quasi Monte Carlo
Lattice integration vs pseudo Monte Carlo vs quasi Monte Carlo [2]

A Quasi Monte Carlo
The discrepancy of QMC simulation is

(InNye)?®

C(d,Nyc) = c(d)
MC
Notice thatthe discrepancy depends on the dimensi&ince there is no statistics behind
low discrepancy sequences, therenis variance estimationA variance estimation can be
achieved bynultiple simulations with scrambled low discrepancy sequeifrarxdomised

QMC, seeGla03).

AFollowing Jac08 w ¥®Ba misunderstanding in the literature that they begin to fail as and
when you start using dimensionalities above a few dazabs

ARecentlygefficient high dimensional low discrepancy generators have been made available
In particular Brodd proposesSobol) ISy SNI 02 NE g AMER2,89 Y Sy a iz

AThe recent financial literature on the subject is focused on pricing analysis (see e.qg.
[KucO7,Kucl]), whilerisk management applicatiorare, to our knowledge, much less
recent and focused on market risk only (see e2guP§, [Kre983, [Kre98l, [Mon99).

Bianchetti, KucherenkpScoleri Better Pricing and Risk Management 17
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [1]

Input variables Model function Output variable

(21,...,2p) € Vp vl f(x1,...,2p) ol y= f(11,...,2p)
Without loss of generality we can takg to be theD-dimensional hypercube, so that

v, ~id.d. U[0,1] Vi=1,...,D

A Option pricing: A Risk measures:
0 D =Ny, (single asset) 0 D =N XNge, (can be very high!)
0 D =Ny XNge, (multiple assets) o y = portfolio P&L(VaR ES),
0 Yy = Price, Greeks portfolio value (EPE/ENE, PFE)

Advantages of GSA w.r.t. other SA approaches:
0 It quantifies the effect ofarying a given inpu(or set of inputs) whilexll other
Inputs are varie@s well.
0 It provides a measure afiteractionamongvariables.
0 It can be applied also toon-linear models

Bianchetti, KucherenkpScoleri Better Pricing and Risk Management
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [2]

A ANOVA decomposmon

(@) = fot Zf z-(asz-) -+ Z

-+ fio.p(®1,...,TD)

First orEIer terms Second order terms D-ordéﬂf term

Thedecompositionis uniqueif
/ lea (ajh?"‘?x’is)dxik =0, VEk = L.

In this case terms arerthogonaland are given by integrals involving offy).
Forsquareintegrablefunctions thetotal varianceof f decomposess

Za +Za + . +O-%2...D;

1<J

?;1,

ff“, @iy, ... @ )dxy, - - dx;_. Partial variances
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [3]

A Sobold & S yiadicash OA (i &

0-11,...,1'5
Si i = 2
0 They measure the fraction of variance accountedfil,...,@s (37@‘1, ceey %)
0 Theysumuptol
0 Fors>1they measure interactionamong i, .., T,
0 One can introduc&obol) A Vv RA OS a variabsYain order foimeasurerthe

importance of a subsetof x w.r.t. the complementary subset. Moreover, one
can introduceotal effect indicesY in order to measure théotal contribution of a
subsety to the total variancgSob051).

Theycan be used to:

0 Rankvariables in order aimportance

0 Fixunessentialvariables

0 Reducemodelcomplexity

0 Analyze/predicthe efficiency of various numericathemes

Bianchetti, KucherenkpScoleri Better Pricing and Risk Management
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysis [4]

AThemostusedSobol & SY aAUAGAG&@GeAYRAOSE AY LINF OGA (

2
ok
Y
Sz' — ;y
2
tot Oi,eis
S =
) . o
1E{01,eunsls }

0<S;, <S<.

ASpecial caseare:

0 Tt KS 2dziLlzi Fdzy Ol X2y R2SayQi RSLISY
0 Y pdthe output function depends only o
o Y Y dinteractions betweerw and other variables are absent
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2: Monte Carlo and Quasi Monte Carlo
Global sensitivity analysifb]

ASoboR AYRAOSE [IhNBdinSisihaNB 540 theyare usually evaluated
via MC/QMC techniques&ifficient formulashave been developed, which allow to
computeSobol A Y RAOSa& F2NJ &dzo a Sfx)athud Fvoidthg tHék | 6 f S 2
knowledge of ANOVA componentsob05l). Furthermore, the computation ofY and
"Y canbereducedtd 'O ¢ function evaluationsfucl],

Sy =z [ L02) = Rl 2) = Flo. ldudzdy/ @
St =3 | U.2) = 1 2)Pydzay

1
o 2/ [y, 2)dydz — f3
0

fo =/O [y, z)dydz

whereyandz(or& &ndl )@re two complementary subsets xfor E)Q
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2: Monte Carlo and Quasi Monte Carlo
Effective dimensions [1]

AManyfinancial problems are highimensional, but often not all the variables are equally
important: effective dimensionwere introduced to quantitatively measure the number of
most important variables of a model functiof 497 .

AThe superior efficiencgf QMC methods for some higlimensional problems can be ascribed
to areducedeffective dimensiomv.r.t. nominal dimensioof the model functionf(x).

AGSA can be used to compute effective dimensions and, thusgedictthe performance of
QMCmethodw.r.t. standard MCfor a givenf(x).

A Differentnotions ofeffective dimensiongan be introduced:
0 Theeffective dimension in the superposition seris¢he smallestly suchthat

Z S, > 1—¢, for some threshold e

0<|y|<ds

0 Theeffective dimension in the truncation senisethe smallest; such that

Z Sy > 1—e¢e, for some threshold ¢

yg{l,Z,,dT}
0 Theaverage dimensiod,is defined a4 = Z ly| Sy
0<|y|<D
Bianchetti, KucherenkpScoleri Better Pricing and Risk Management
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2: Monte Carlo and Quasi Monte Carlo
Effective dimensions [2]

AThe effective dimension ds R 2 S adégeid on the order of sampling of variables
while the effectivedimensiond; does

AThe following inequality hold® Q.
A All high-dimensionalnumericalexperimentsfound in the literature showthat QMCis more
efficient than MC when the effective dimension (in one or more senses)is small In

particular[Soll4] suggestshat QMCcouldbe more efficientthan MCwhenQ O o

AFunctions f(x) can be classified according to their dependence on variables

Type Description Relationship between SI Eff. dimensions
A Few important variables Syt ny, > S /n. dr < D
B Low-order interactions S;~ S;Vi,j,S; ~ StV ds < D
C High-order interactions — S; ~ S;Vi,j, S; <« S'Vi d¢ ~ D

ForTypeA and TypeB functions,QMCis more efficient than MC, for TypeCfunctionsQMC
cannotachievehigheraccuracythan MC. TypeA and TypeB functionsare very commaonin
financialproblems,possiblyafter effectivedimensionreduction

Bianchetti, KucherenkpScoleri Better Pricing and Risk Management 24
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2: Monte Carlo and Quasi Monte Carlo
Effective dimensions [3]

A Contraryto MC, QMCefficiencyis sensitiveto the order in which variablesx are sampled
from the LDS The common explanationis that, since lower coordinatesin each D-
dimensional.DSdraw are particularlywell distributed, one shouldusethemto simulatethe
most important variablesand concentrate there most of the variance moreover, since
lower dimensionalprojectionsof LDS(especiallyfor well initialized{ 2 0 ffuenceshre
much better distributed, in the caseof Type B functions, higherorder interaction terms
shouldbe relegatedto later dimension,whoseprojectionsare not sowell distributed.

ATheoptimal samplingorder is not a priori known for a givenf(x). In path-dependentoption
pricing a popularchoiceis to apply BrownianBridgeto the discretizationof the underlying

stochastic process[CaB7]. Some authors report caseswhere Brownian Bridge is not
superiorto standarddiscretizationPa1].

W(0)=0, W(tp)=tp cp*l(ml) ? Brownian Bridge discretization of a Brownian motion
tp — t; t:—t; te — i)t — ;) . _

W(tj): . JW(t%)+ . W(tk)+ (k J)(J )(I) 1($j)1 ti<tj<tk‘a j:2,,D
t, — 1 t, — 1 b, — 1

AGSpLexplains whya given discretization scheme improves QMC convergenceésgadi it
will be superior to MC, at a reasonable computational cost, witlamtitiallycomputingthe
convergenceaate viadirect simulations(which would be very timeonsuming.

Bianchetti, KucherenkpScoleri Better Pricing and Risk Management o5
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2: Monte Carlo and Quasi Monte Carlo
Error Analysis [1]

Many problems in financial engineering can be reduced to fudghensional integration ch

givenfunctionf, hence MC/QMC simulation is usually the election method to solve them

Alnorder to measure the efficiency of the two techniques, integration eg@sa function
of the number of simulated pathy,,-is analysed

Alf Vis the exact value of the integral aiMy is the simulated value usingpaths, the root
mean square error, averaged twindependent runs, is defineals

sd}/zwv@)

1=1

Inthe QMC case, for each run, a different part of the LDS is used.

Alnorder to compare the performances of the two techniques we conduct the three
following analyses:
A. Convergence analysis
B. Monotonicity and stability analysis
C. Speedup analysis
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2: Monte Carlo and Quasi Monte Carlo
Error Analysis [2]

A. Convergence analysis

AMCconvergenceate isknownto be, ('Qj /O irrespectiveof the dimensionality

AAn upper bound to QMCconvergenceateis| T @ )j 0 . It is asymptoticallyfaster
than MCbut it dependson dimensionalityand, for feasibleN, it canbe too slow However,it
IS not observed in practice integrands with low effective dimension show faster

convergence
e=cN™“
with| approachingdl.

ATheroot meansquareerror canbe computedfor different numbersof simulatedpathsand
constantsc and a canbe estimatedfrom linearregression
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2: Monte Carlo and Quasi Monte Carlo
Error Analysis [3]

B. Monotonicityand stability analysis

A Numericaltests presentin the literature show that QMC convergencds often smoother
than MC. suchmonotonicityand stability guaranteenigheraccuracyfor agivenNy,

A Inorderto quantify monotonicityand stability we adoptthe following strategy.
1. dividethe rangeof path simulationsin n windows,
2. computesamplemeanand samplevariancefor eachwindow,
3. we propose
o dog-NE (i dasamedsureof monotonicity,and
o 02t | asameasuredf stability.

A n this way:
o Monotonicconvergencawill shownon oscillatinglog-return convergingo zero
0 Stableconvergencawill showlow and almostflat volatility
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2: Monte Carlo and Quasi Monte Carlo
Error Analysis [4]

C. Speedip analysis

ASQuchmeasure is sometimes considered in the literatufecP84. It allows to quantify the
computational gairof a methodi with respect to a methogl.

Altis definedas )

where 0. (0) isthe threshold number of paths needed teach and maintaia given
accuracya. SpeedUp can be either computed by direct simulation (but it is extremely
computationally expensive) or extrapolated by the estimated law of the convergence rate

~ o Ve ~ ~r

6o0dzi AlG 62dz Ry Qi OF LJidzNB dzy SELISOGSR Tt dz0
AWe choose to identify the thresholl* as the firstN such that

V—-a<Vyx3c<V+a, VN >N,

Bianchetti,KucherenkpScoleri Better Pricing and Risk Management

: . : ) : .29
WBS 1 Fixed Income Conference with High Dimensional Quasi Monte Carlo P



3: Prices and sensitivities for selected derivatives
Selected payoffs

The aim of this analysis is to compare the efficiency of QMC w.r.t. PMC in compuiizg
andgreeks(Delta, Gamma, Vega) for selected payPWeith increasing degrees of complexity,
usingsimple dynamical modeldn particular we rely on Blackcholes model, where the
underlying proces$Sfollows a geometric Browniamotion

A EuropeanCalt P = max(Sp — K,0),
b 1/D
A AsianCalt P =max(S — K,0), S= (H 57:) ;
1=1
A DoubleKnockOut: P = ma’X(SD - K; 0) ﬂ{Bl<Sfi<Bu}7 Vi = 17 ceey DJ
D
. Si — Si—1
A Cliquet P = max max !O, min(C, )] ,F} .
q 2 =

whereKis the strike priceB and B, the values of the lower and upper barrier, respectively, C

a local cap and F a global floor. The underlying process is discretized across D simulation da
(remember that in the single asset case the number of time simulations steps is equal to the
dimension of the MC simulation.)
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3: Prices and sensitivities for selected derivatives
Simulation details

A Scenariofor the underlying procesSare simulated using:
0 MC +antithetic variables+ MersenneTwister generator|{IT9q
0 QMC + standardiscretisation+ SobolSegenerator Brodd
0 QMC +brownianbridgediscretisation+ SobolSegenerator Brodd
0 NycScenarios as power of twg to maximise thexfficiency ofSobo{l.ow
Discrepancy Sequence (LDS)

APricesare computed as averages of the payoff value over MC scenarios.
A Greeksare computed vidinite differencingusing

o Common PRN/LCfer both base andoumpedscenarios
o Centraldifferences

ARoot mean square errds computed as an average odgndependent runs (using nen
overlapping LDS) w.r.t. a reference value: the latter is given by analytical formulas for
European and Asian options, or by a simulated value using a sufficiently [&geuf@ber

of MC scenarios in other cases.

A Codes are implemented iMATLAB
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3: Prices and sensitivities for selected derivatives
European Call: set up

The first test case regards an ABMropean call option

Test #1 specs

I > I D D D D D D

Riskfree rate r = 0.03

Spot pricel’Y = 100

Volatility:,, =0.3

Maturity: T =1

Strike priceK = 100

Number of time steps) =32

Output values: Price, Delta, Gamma, Vega
Number ofMC/QMCitrials for the computation of S
Number of simulated pathsi chy By
Number of independentuns:L = 30

Increment on finite differences:

07 VW, prnpripmn

01, 1,7 pmnipmnpmn

p 1
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3: Prices and sensitivities for selected derivatives
European CallGlobalSensitivity Analysis [1]

GSA for Standard Discretization

.|| Price, Delta and Vega are Type

B functions: in these cases we

= expect that QMC will
outperform MC.

Gamma is a Typ€ function: in
this case we expect that QMC
g2y Qi 2 dzi LISNJF 2 N

GSA - European + Std discretization - Delta
0.1
) . ) w#*ﬁww#ﬁ:ﬁﬁ—tﬁrwmﬂw
GSA - European + Std discretization - Price oar 1
0.045 . i . . . B O S L T S
W%*H*W*WW* 0.09F
” 2 swihe= 107
L 004 s 2 posf ot e
g - i 2 —+—5withe = 10
c o L -
3 0035t — S}m g oo 5 withe = 107
g T 006f ——sPtyithe = 1073
g i
s 5 ) -2
E 0.03F # 0.05f —#— 5, withe= 10
i
; oo4f —+—sithe = 10
If 0.0251
003}
0.02 1 . 1 L i 2 SPRERHE N SR T Ry
. 0.02 L . L . ) .
0 10 15 20 25 30 35 [1] 5 10 15 20 25 30
variables variables
GSA - European + Std discretization - Gamma
12 T
ir X\M ﬁ—* M’*‘ GSA - European + Std discretization — Vega
+44 H*—*—*—k**‘F** ** 0.055 T T T T T T
g 081 S.withe = 107 0,05 | FAEHE e b
: :
2 - 2
k= —+—5 with e = 107 w 0.045 s withe= 107 | |
5 06f _ & ot with e = 107
4 s withe = 107° 2 oos —+— 5" withe= 10
] £ pp4f J
o - - " _ -3
I paf —+—Sfwithe= 1078 2 swithe = 10
5 ~ & 0.035 I S——
= —'—Siwi[hg= 1(]2 .%_} +Si with e = 10
i L L 2 L e |
o2 —+—sPwithe = 1072 2 0.03 —4—S,withe = 10
i 0025 —+— 5 withe = 107
[ e s s s = S S RSN
0.02
02 \ \ \ \ \ \ R T T +-"'-a|e.* I S
: 0.015 . : . ! .
0 5 10 15variab|e520 25 30 s s o = = = ™ ol

variables

S;/Sket

dr

Zi Si ds

da effect of ¢

Price 0.49
Delta 0.26—0.23
Gamma 107% — 1072

Vega 0.33

0.68
0.77
107 — 102
0.543

32
32
32
32

32

< 32
< 32

< 32

1.40 -

3.2 small
32 yes
1.64 no
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3: Prices and sensitivities for selected derivatives
European Call: Glob&ensitivity Analysis [2]

GSA for BB Discretization

Price, Delta, Gamma and Vega
are TypeA functions: we expect
that QMC will always
outperform MC.

Effective dimensions equal 1:
this is a trivial result, since the
payoff explicitly depends only
on one variable (spot at
maturity)

Si/S}:Ot Zi Si dT dS dA effect of ¢

Price 1 1 1 1 1 -
Delta 1 1 1 1 1 no
Gamma 1 1 1 1 1 no
Vega 1 1 1 1 1 10
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