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Abstract 

 

A new derivative based criterion yτ  for groups of input variables is presented. It is shown 

that there is a link between global sensitivity indices and the new derivative based measure. It is 

proved that small values of derivative based measures imply small values of total sensitivity 

indices. However, for highly nonlinear functions the ranking of important variables using 

derivative based importance measures can be different from that based on the global sensitivity 

indices. The computational costs of evaluating global sensitivity indices and derivative based 

measures, are compared and some important tests are considered.  
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1. Introduction 
 

The quality of a model depends on a variety of aspects such as accuracy of experimental 

data, choice of an appropriate model and reliable identification of the unknown model 

parameters. With regard to these aspects, sensitivity analysis offers a generalized approach for 
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identification of functional dependencies, selection of a model structure from a set of known 

competing models, effective and reliable identification of important model parameters and input 

variables and subsequent reduction of model complexity. 

Let ( )1,..., nx x x=  be a point in the n − dimensional unit hypercube nH  with Lebesgue 

measure 1 ndx dx dx= ⋅⋅⋅ . Consider a model function ( )1,..., nf x x  defined on this hypercube nH . 

It can be a black box model and not necessarily an analytical expression. 

For ( ) 2f x L∈  global sensitivity indices provide adequate estimates for the impact upon 

( )f x  from individual factors ix  or from groups of these factors. Such indices can be efficiently 

computed by Monte Carlo or quasi-Monte Carlo methods that include values of ( )f x  at special 

random or quasi-random points. However, if the number of model evaluations is too high 

application of global sensitivity indices can become unpractical.   

Derivative based importance criteria provide an alternative approach to the same 

problem: the impact upon ( )f x  from the factor ix  is estimated by a functional that depends on 

the derivative if x∂ ∂ . A link between both approaches was established in [1]. It was proved that 

derivative based estimates can be successfully used for identifying non important factors, but 

ranking important variables according to their derivative based estimates can be different from 

that based on the global sensitivity indices. Numerical experiments show that in certain situations 

(e.g. if the variation of if x∂ ∂  is small) derivative based importance estimates can be computed 

much faster than the corresponding sensitivity indices [2]. Although global sensitivity indices are 

superior to derivative based importance criteria in that they provide more detailed information 

about models accounting for both individual effects and interactions between variables, 

derivative based importance criteria can be seen as a good practice for factors screening purposes 

in place of the modified Morris method *µ  measure [3]. The Morris method uses random 

sampling of points from the fixed grid (levels) for averaging elementary effects which are 

calculated as finite differences with the increment delta comparable with the range of 

uncertainty. For this reason it can not correctly account for the effects with characteristic 

dimensions much less than delta. Calculation of the Morris measures is not supported by the 

convergence monitoring procedure and therefore Morris measures can be unreliable.  
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In the present paper a new derivative based criterion yτ  is introduced, that is regarded as a 

possible estimate of the impact upon ( )f x  from a group of factors ( )1
,...,

si iy x x= . It is proved, 

that if ( )f x  is linear with respect to 
1
,...,

si ix x , then the performance of yτ  is equivalent to the 

performance of the sensitivity index tot
yS  defined in section 2.3 below. In the case when y  

consists of one factor ix , the corresponding criterion iτ  is a slight improvement of the criteria 

studied in [1]. 

This paper is organized as follows: The next section contains definitions and main 

properties of global sensitivity indices. Section 3 introduces the new derivatives based 

importance criterion yτ . Section 4 considers the one-factor case criterion iτ . Sections 5, 6 and 7 

contain some simple but significant examples illustrating theoretical results. In section 8 the case 

of independent random factors 1,..., nx x  is briefly discussed. Finally, conclusions are presented in 

the last section. The Appendix contains a simple test for arbitrary importance criteria that 

estimate the impact of groups of variables. It compares the results for global sensitivity indices, 

the criterion yτ  and the generalization of the Morris measure for groups of variables *µ  

proposed in [3]. 

Note that global sensitivity indices were introduced in [4]. Their main theoretical properties 

were developed in [5-10]. Applications of these techniques are presented in e.g. [11-13]. Morris 

elementary effect measures were introduced in [14] and further developed in [3]. Derivative 

based criteria were introduced in [2]. Their theoretical properties and the link with global 

sensitivity indices were established in [1]. Numerical examples are given in [2] and [15]. It was 

shown in [15] that this technique becomes especially efficient if automatic calculation of derivatives is 

used. 
 

2. Global sensitivity indices  

 

As mentioned before, let ( )1,..., nx x x=  be a point in the n − dimensional unit hypercube 

with Lebesgue measure 1 ndx dx dx= ⋅⋅⋅ . Consider an arbitrary subset of the variables 

( )1
,...,

si iy x x= , 1 s n≤ < , and the set of remaining complementary variables z , so that 

( ),x y z= , dx dydz= . All the integrals in the paper are written without integration limits: we 

assume that each integration variable varies independently from 0  to 1. 
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2.1 ANOVA-like decomposition 

 

Consider a model function ( ) 2f x L∈ . Denote 

( )0f f x dx= ∫ ,        

( ) ( )1 0h y f x dz f= −∫ ,       

( ) ( )2 0h z f x dy f= −∫ ,       

( ) ( ) ( ) ( )12 0h x f x f x dz f x dy f= − − +∫ ∫ .    

Then we obtain a decomposition of ( )f x  

( ) ( ) ( ) ( )0 1 2 12f x f h y h z h x= + + +     (2.1) 

One can easily verify that  

( ) ( ) ( ) ( )1 2 12 12 0h y dy h z dz h x dy h x dz= = = =∫ ∫ ∫ ∫ .   

These relations imply the orthogonality of the terms in (2.1): 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 12 2 12 0h y h z dx h y h x dx h z h x dx= = =∫ ∫ ∫ . 

 

2.2 Variances 

 

The following integrals are called partial variances: ( )2
1yD h y dy= ∫ , ( )2

2zD h z dz= ∫ , 

( )2
12yzD h x dx= ∫  and D  is the total variance: ( )2 2

0D f x dx f= −∫ . Squaring (2.1) and 

integrating over dx , we obtain y z yzD D D D= + + . Two total partial variances are defined as 

tot
y y yzD D D= + , tot

z z yzD D D= + . Note, that if 1,..., nx x  were treated as independent random 

variables uniformly distributed in the unit interval, then all the terms in (2.1) would be random 

variables and ,  ,  ,  y z yzD D D D  their variances. 

 

2.3 Global sensitivity indices 

 

The global sensitivity indices are defined as ratios with common denominator D : 

y
y

D
S

D
= , z

z
DS
D

= , yz
yz

D
S

D
= , 

tot
ytot

y

D
S

D
= , 

tot
tot z
z

DS
D

= .  
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Obviously: 1y z yzS S S+ + = , 1tot
y zS S= − , 1tot

z yS S= − . These indices have the following main 

properties: 

1º 0 1tot
y yS S≤ ≤ ≤ . 

2º 0tot
y yS S= =  means that ( )f x  does not depend on y . 

3º 1tot
y yS S= =  means that ( )f x  depends only on y . 

4º If the set of variables z  is somehow fixed, 0z z= , and ( )f x  is approximated by 

( )0,f y z , then the approximation error depends strongly on tot
zS . 

Here is an exact formulation of property 4º from [8] and [9]. Denote by ( )0zδ  the 

approximation error in a scaled 2L  metric: 

( ) ( ) ( ) 2
0 0

1 ,z f x f y z dx
D

δ = −⎡ ⎤⎣ ⎦∫ .     

Then ( )0
tot
zz Sδ ≥ . But if 0z  is random and uniformly distributed, then the expectation is 

( )0 2 tot
zz Sδ =E .       

 

2.4 Integral formulas 

 

The following integral formulas show that global sensitivity indices can be computed 

without knowing the terms in (2.1): 

( ) ( ) 21 ,
2

tot
yD f y z f x dxdy′ ′= −⎡ ⎤⎣ ⎦∫ ,    (2.2) 

( ) ( ) ( ),yD f x f y z f x dxdx′ ′ ′= −⎡ ⎤⎣ ⎦∫ .   (2.3) 

The integrals on the right hand side can be computed by crude Monte Carlo or quasi-Monte 

Carlo methods, the point x′  is an independent realization of the point x , so that ( ),x y z′ ′ ′=  and 

dx dy dz′ ′ ′= . The total variance D  can be computed by traditional statistical methods. If 

simultaneously m  different subset y  are considered, then according to [6] for each Monte Carlo 

trial 2m +  model estimates are necessary. 

Formula (2.2) is given in [5], while formula (2.3) was derived in [9]. The variance of the 

(2.2) estimator was investigated in [5]; the variance of the (2.3) estimator was studied in [16]. 
 

3. Importance criterion yτ  
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Assume that ( )f x  is differentiable. Consider the Taylor expansion 

( ) ( ) ( ) '

1

, , ( ) ...
i pp

p

s

i
p i

f x
f y z f y z x x

x=

∂
′ − = − +

∂∑     

The omitted terms depend on second order derivatives. If these derivatives (or more accurately, 

if certain integrals that include these derivatives) are small, then the last sum will be a fair 

approximation for the expression on the left hand side. Substituting this sum into formula (2.2), 

we construct the following derivative based importance criterion: 

( ) ( )
2

1

1ˆ
2 p p

p

s

y i i
p i

f x
x x dxdy

x
τ

=

⎡ ⎤∂
′ ′= −⎢ ⎥

∂⎢ ⎥⎣ ⎦
∑∫ .    

In certain circumstances ˆyτ  will be near to tot
yD . In the formula for ˆyτ , the integration over dy′  

can be carried out. Indeed, 

( ) ( ) ( ) ( ) ( )( )
2

2

1

1ˆ
2 p p p p q q

p p q

s

y i i i i i i
p p qi i i

f x f x f x
x x dxdy x x x x dxdy

x x x
τ

= <

⎛ ⎞∂ ∂ ∂
′ ′ ′ ′ ′⎜ ⎟= − + − −

⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ ∑∫ ∫ . 

The final expression for ˆyτ  is  

( ) ( ) ( )
2 2

1

1 3 3 1 1ˆ
6 2 2
p p

p q

p p q

s
i i

y i i
p p qi i i

x xf x f x f x
dx x x dx

x x x
τ

= <

⎛ ⎞ − +∂ ∂ ∂ ⎛ ⎞⎛ ⎞⎜ ⎟= + − −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑∫ ∫ . 

The sum over p q<  means that 1 p q s≤ < ≤ . 

yτ  is a further simplification of ˆyτ : only one main term is retained, namely 

( )
2 2

1

1 3 3

6
p p

p

s
i i

y
p i

x xf x
dx

x
τ

=

⎛ ⎞ − +∂
⎜ ⎟=
⎜ ⎟∂⎝ ⎠

∑∫ .    (3.1) 

This simplification is justified by the following properties of yτ : 

 

Theorem 1 

If ( )f x  is linear with respect to 
1
,...,

si ix x , then tot
y yD τ= , or in other words ytot

yS
D
τ

= . 

 

Theorem 2 
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A general inequality holds: ( )224tot
y yD π τ≤  or in other words 2

24 ytot
yS

D
τ

π
≤ . 

 

The first theorem shows that if the model ( )f x  is near to linear, the performance of yτ  will 

be near to the performance of global sensitivity indices. 

The second theorem shows that small values of yτ  imply small values of tot
yS  and this allows 

identification of a set of unessential factors y  (usually defined by a condition of the type 
tot
yS δ< ). 

 

Proof of Theorem 1 

Assume that ( ) ( ) ( )
1

p

s

p i
p

f x a z x b z
=

= +∑ . Formula (2.2) then implies 

( )( ) ( ) ( ) ( )
2

2
2 2

1 1 1

1 1 1
2 2 12p p p p

s s s
tot
y p i i p i i p

p p p
D a z x x dxdy a z x x dzdy a z dz

= = =

⎧ ⎫
′ ′ ′ ′= − = − =⎨ ⎬

⎩ ⎭
∑ ∑ ∑∫ ∫ ∫ . 

On the other hand, from (3.1) 

( ) ( )
2

2 2

1 1

1 3 3 1
6 12
p p

p

s s
i i

y p i p
p p

x x
a z dz dx a z dzτ

= =

− +
= =∑ ∑∫ ∫ ∫ .□  

The proof of Theorem 2 will be given at the end of the next section, because this proof 

needs some results derived in the latter section. 

 

4. Importance criterion iτ  

 

Consider now the one dimensional case when the subset y  consists of only one variable 

( )iy x= . From (3.1) we then obtain a criterion  

( ) 2 21 3 3
6
i i

i
i

f x x x dx
x

τ
∂⎛ ⎞ − +

= ⎜ ⎟∂⎝ ⎠
∫ ,   (4.1) 

 that is very close to the criterion iν , discussed in [1]:  

( ) 2

i
i

f x
dx

x
ν

∂⎛ ⎞
= ⎜ ⎟∂⎝ ⎠
∫ .      (4.2) 
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In fact, 21 3 3t t− +  for 0 1t≤ ≤  is bounded: ( )21 1 3 3 14 t t≤ − + ≤ . Therefore 24 6
i i

i
ν ντ≤ ≤ . In 

[1] a general inequality was proved: 2

1tot i
iS

D
ν

π
≤ . From this inequality we immediately obtain a 

general inequality for iτ :  

2

24tot i
iS

D
τ

π
≤ .       (4.3) 

Thus small values of iτ  imply small values of tot
iS , that are characteristic for non important 

variables ix . 

At the same time from Theorem 1 we obtain a corollary: if ( )f x  depends linearly on ix , 

then tot i
iS

D
τ

= . Thus iτ  is closer to tot
iD  than iν . 

Note that the constant factor 2
1
π  in the general inequality for iν  is the best possible. But in 

the general inequality for iτ  the best possible constant factor is unknown. 

 

4.1 Example 

 

Consider the so-called g − function that is often used in sensitivity analysis for numerical 

experiments ( )
1

4 2
1

n
i i

i i

x a
g x

a=

− +
=

+∏ , where the non negative parameters ia  define the 

importance of ix : the larger ia , the less important the input variable ix  is. For the g − function 

( )1tot
i i k

k i

D d d
≠

= +∏ , where ( ) 21 1
3k kd a −= +  (details can be found in [1]). It can be proved that 

4 tot
i iDτ = . 

Here are two comments in connection with this example. 

First, if 2 2 0if x∂ ∂ ≡ , then ( )f x  is a linear function of ix , and according to the corollary, 

tot
i iDτ = . For the g − function 2 2 0ig x∂ ∂ ≡  for all values of ix  except 1

2ix = , so in this case 

tot
i iDτ ≠ . 

Second, in this example the iτ  are proportional to tot
iS  for all ix ; these ix  can be either 

nonimportant or very important. This example suggests that the iτ  could be used in the same 
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way as tot
iS  for ranking arbitrary variables. The example in the next section shows that this is not 

always so: ranking important variables according to the values of iτ  and tot
iS  can be different. 

 

Proof of Theorem 2 

The inequality declared in Theorem 2 in Section 3 follows immediately from the one 

dimensional inequality (4.3) and the following two relations: 

1
p

s

y i
p

τ τ
=

=∑       (4.4) 

and 

1
p

s
tot tot
y i

p
D D

=

≤ ∑ .     (4.5) 

Indeed 2 2
1 1

24 24
p p

s s
tot tot
y i i y

p p
D D τ τ

π π= =

≤ ≤ =∑ ∑ . 

Equality (4.4) follows from the definitions of yτ  and iτ . Here is a sketch of a proof of the 

inequality (4.5). We recall the ANOVA decomposition of ( )f x  into a sum of orthogonal terms 

of different dimensions and the corresponding decomposition of the total variance D : 

12i ij n
i i j

D D D D ⋅⋅⋅
<

= + + ⋅⋅⋅ +∑ ∑ .    

The total partial variance tot
yD  is a sum of all 

1 mk kD ⋅⋅⋅  where at least one of the indices 

( )1,...,j sk i i∈ . The partial variance 
p

tot
iD  is the sum of all 

1 mk kD ⋅⋅⋅  where one of the indices jk  is 

equal to pi . Obviously, an arbitrary term 
1 mk kD ⋅⋅⋅  from tot

yD  has an index equal to sum pi , and is 

included into 
p

tot
iD .□ 

 

5. Counterexample 

 

Consider a function f  which has the following ANOVA decomposition: 

54

12 1 2
1

1 1 1
2 2 2i i

i
f c x c x x

=

⎛ ⎞ ⎛ ⎞⎛ ⎞= − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ,    

where 1, 1 4ic i= ≤ ≤ , 12 50c = . For this function all 0.237,  1 4iS i= ≤ ≤ , 12 0.0523S =  and 

1 2 3 40.289,  0.237tot tot tot totS S S S= = = = , so variables 1, 2 have the same importance, and so do 
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variables 3, 4. However, for derivative based importance criteria, variables 1 and 2 have different 

importance: 1 20.101,  0.409τ τ= = , while variables 3 and 4 still have equal importance 

3 4 0.083τ τ= = . Moreover, 2 1 3 4τ τ τ τ> + + . 

One can see that ( )2
i Dτ π  is much higher than tot

iS  only for variable 2. It is caused by the 

strong nonlinearity of the term ( )1,2 1 2,f x x  with respect to 2x . This example shows that ranking 

of influential variables based on iτ  may result in false conclusions: in our example 2x  seems 

more important than all the other variables together. 

 

6. Variances: iτ   versus tot
iD  

 

In this Section Monte Carlo algorithms for computing iτ  and tot
iD  are compared and the 

advantage of the algorithm for computing iτ  is shown. Consider a model function ( )f x  that is 

linear with respect to ix : 

( ) ( ) ( )if x a z x b z= +       (6.1) 

It follows from Section 4 that for this function ( )21
12

tot
i iD a z dzτ = = ∫ .  

Assume that the integral representation (2.2) is applied for computing tot
iD  

( )( )221
2

tot
i i i iD a z x x dxdx′ ′= −∫ .     

If this integral is estimated by crude Monte Carlo, the estimator’s variance is 

( ) ( ) ( )244
1

1
4

tot
i i i iV a z x x dxdx D′ ′= − −∫ .    

Assume now that formula (4.1) is used for computing iτ : 

( )
2

2 1 3 3
6
i i

i
x xa z dxτ − +

= ∫ .      

The crude Monte Carlo estimator’s variance of iτ  is 

( ) ( )
22

24
2

1 3 3
6
i i

i
x xV a z dx τ

⎛ ⎞− +
= −⎜ ⎟

⎝ ⎠
∫ .    

Denote by 1N  and 2N  the numbers of Monte Carlo trials (or the sample sizes) required to 

achieve a prescribed relative standard error: 
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1 2

1 2

1 1
tot
i i

V V
D N N

δ
τ

= = .      

It follows from these relations that 1 1

2 2

N V
N V

= . 

Assertion 1 

The function (6.1) implies 1

2

2 7N
N

< ≤ , where the maximum 7 corresponds to ( )a z Const≡ . 

Proof 

Let us introduce an auxiliary parameter 
( )

( )( )
4

2
2

a z dz

a z dz
λ = ∫

∫
. Obviously, 1λ ≥ . The integrals 

over idx  and idx′  in 1V  and 2V  can be easily computed. Eliminating ( )4a z dz∫ , one obtains: 

1 1

2 2

60 1 144
120 1 144

N V
N V

λ
λ

−
= =

−
. One can easily verify that the derivative ( )1 2d N N dλ  is negative in 

the interval 1 λ< < ∞ . Therefore, the maximum value is attained at 1λ =  and the minimum 

value is approached as λ →∞ . □ 

It follows from Assertion 1, that the sample size for tot
iD  must be several times larger than 

that for iτ . 

 

6.1 iν  versus tot
iD  

 

Assume now that the criterion iν  is used rather than iτ  with 

( )2
i a z dzν = ∫ .      

If this integral is estimated by crude Monte Carlo, the related variance 3V  will be 

( ) ( )( )2
2

3 1V a z dzλ= − ∫ . Denote by 3N  the sample size that provides the same relative standard 

error 

3

3

1

i

V
N

δ
ν

= .       

Then we obtain: 

1 1

3 3

144 2.4 1
1

N V
N V

λ
λ

−
= =

−
.     
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Assertion 2 

The function (6.1) implies 1

3

2.4 N
N

< ≤ ∞  where the maximum ∞  corresponds to 

( )a z Const≡ . 

Proof 

In the interval 1 λ≤ < ∞  the ratio 1 3N N  decreases from ∞  at 1λ =  to 2.4  as λ →∞ . □ 

It follows from Assertion 2, that if the criterion iν  is used and λ  is close to 1, the required 

sample size for estimating tot
iD  will be by several orders of magnitude larger than the sample 

size for estimating iν . Such an effect has also been numerically observed in [2]. 

 

Remark 

 

We have tried to generalize Assertion 1 to nonlinear functions of the type 

( ) ( ) ( )m
if x a z x b z= + ,      

where 1
2m > . However, we have found that at all 2m ≥ , the ratio 1 2 1N N < . Thus tot

iD  is 

superior to iν  in terms of the computational effort. 

 

7. Nonlinear example 

 

Consider the function 

( ) ( )
1

n

i i
i

f x xϕ
=

=∏ ,      (7.1) 

where ( ) 1
2i i i i ix a b xϕ ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
. Obviously, i i idx aϕ =∫ , 2 2

i i i idx aϕ ε= +∫ , where the variance 

2 12i ibε = . Denote ( )2
i t t

t i
R a ε

≠

= +∏ , ( )2

,
ij t t

t i j
R a ε

≠

= +∏ , ( )2

, ,
ijk t t

t i j k
R a ε

≠

= +∏ . 

 

7.1 Individual variables 

 

If ( )iy x= , then according to Theorem 1, tot
y yDτ = : 
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tot
i i i iD Rτ ε= = .       

 

Two dimensional set ( )i jy = x , x  

In this case tot
y yDτ > : 

( )2 2tot
y i j j i i j ijD a a Rε ε ε ε= + + ,      

( )2 2 2y i j j i i j ija a Rτ ε ε ε ε= + + .      

 

Three dimensional set ( )i j ky = x , x , x  

Here the difference tot
y yDτ −  increases: 

( )2 2 2 2 2 2 2 2 2tot
y i j k i k j j k i i j k j i k k i j i j k ijkD a a a a a a a a a Rε ε ε ε ε ε ε ε ε ε ε ε= + + + + + + ;  

( )2 2 2 2 2 2 2 2 22 2 2 3y i j k i k j j k i i j k j i k k i j i j k ijka a a a a a a a a Rτ ε ε ε ε ε ε ε ε ε ε ε ε= + + + + + + .  

One can see that as the dimension of the set y  increases, the difference tot
y yDτ −  increases too. 

However, if all 2 « i iaε , then the main terms in yτ  and tot
yD  are the same. One can expect that if 

in (7.1) the variances ( )iVar ϕ  are small, then yτ  will be near to tot
yD . 

 

8. Normally distributed random variables 
 

Consider independent normal random variables 1,..., nx x  with parameters ( ; )i ia σ . Then 

instead of the importance criterion iτ  given in (4.1) we now get the expression  

( ) ( )
2

21
2i i i

i

f x
x x

x
τ

⎡ ⎤∂⎛ ⎞
′⎢ ⎥= −⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

E .    (8.1) 

The expectation over ix′  can be computed analytically. Then we obtain 

( ) ( )2 2 21
2 2

i i i
i

i

f x x a
x

σ
τ

⎡ ⎤∂ − +⎛ ⎞
⎢ ⎥= ⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

E .   (8.2) 

Suppose ( )f x  is linear with respect to ix : ( ) ( ) ( )if x a z x b z= + . Then 

2 2( ( ))tot
i i iD a zτ σ= = E . 

From (8.2) we can obtain the following inequality  
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( ) 22

2
i

i
i

f x
x

στ
⎡ ⎤∂⎛ ⎞
⎢ ⎥≥ ⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

E       

or  
2

2
i

i i
στ ν≥ .             

Using Theorem 4 from [1] stating that 2tot
i i iD σ ν≤ , we obtain  

2tot
i iD τ≤         

or  

2tot i
iS

D
τ

≤ .   

Using this inequality we can easily prove the following theorem. 

 

Theorem 3. If 1,..., nx x  are independent normal random variables, then for an arbitrary 

subset y  of these variables 

2tot
y yD τ≤        

or in other words 

2 ytot
yS

D
τ

≤ .      

  

 

9. Conclusions 

  

A new derivative based criterion yτ  for groups of variables is derived. We also introduced 

a new criterion for a single variable iτ , which is a modification of the criteria studied in our 

previous work. A link between global sensitivity indices and new derivative based measures is 

established. It is shown that for functions linear with respect to a group of variables the 

performance of yτ  for the group is equivalent to the performance of the sensitivity index tot
yS  for 

the same group. It is proved that small values of derivative based measures imply small values of 

total sensitivity indices. However, for highly nonlinear functions the ranking of important factors 

for variance based and derivative based measures can be different. 
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The computational costs of evaluating global sensitivity indices and derivative based 

measures for one class of functions were compared. It was shown that for linear and quasi-linear 

functions derivative based measures require fewer function evaluations, which confirms earlier 

numerical findings. For highly non-linear functions, however, evaluations of global sensitivity 

indices can be cheaper. 

 

Practical Recommendations 

 

For estimating the impact upon ( )f x  from a group of variables y , we recommend to use 

the global sensitivity index tot
yS . If the computation of this index seems too expensive, one can 

try to apply the derivative based criterion yτ , taking into account the following facts: 

1) If the dependence of ( )f x  on the variables from y  is nearly linear, then the values of 

y
D

τ  are near to the values of tot
yS . 

2) In the strongly nonlinear case, small values of yτ  are always significant: they imply small 

values of tot
yS . At the same time, large values of yτ  are less informative: the ratio y

D
τ  can be 

arbitrarily large, while tot
yS  does not exceed 1. 
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Appendix. A simple test for importance measures 

 

Consider a function ( )f x  where all the factors 1,..., nx x  are equivalent and do not interact: 

( ) ( )
1

n

i
i

f x u x
=

=∑ . Here ( )u t  is an arbitrary function, 0 1t≤ ≤ . From general symmetry 
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considerations one can expect that a reasonable importance measure for the set ( )1,..., sy x x=  

must be proportional to s . 

 

Global sensitivity indices 

 

Assume that ( ) 2u t L∈ . One can easily find out, that tot
y y

sS S
n

= = . 

 

Importance criterion τy 

 

Assume that ( ) 2u t L′ ∈ . From (3.1) 

y sτ α= ,       

where 

( )
21 2

0

1 3 3
6
t tu t dtα − +′= ⎡ ⎤⎣ ⎦∫ .     

 

Importance measure µ* 

 

The very first attempt to define a derivative based importance measure for groups of factors 

was made in [3]. 

The importance measure µ∗  for the set ( )1,..., sy x x=  is defined as ( )( )
1

1 N
k

k
x

N
µ η∗

=

= ∑ , 

where the ( )kx  are independent trial points, and ( )xη  (called “elementary effect”) is 

( ) ( ) ( )f x f x
xη

−
=

∆
, ( )1 1,..., ,  ,...,s s nx x x x x+= ± ∆ ± ∆ ; the signs + and – are random and 

equiprobable. 

Consider the simplest test: ( )u t t=  (which means that 1 nf x x= + ⋅⋅⋅ + ). In this case ( )xη  

depends neither on x , nor on ∆ : it is simply a random variable 1 1 1η = ± ± ⋅⋅⋅ ± , where the 

number of units is equal to s . Obviously if N →∞  the value µ η∗→
P

E . Here are the 

distributions and expectations of η  at s =1, 2, 3, 4, 5. 

1:  1,  1s η η= ≡ =Ε , 
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2 0
2 :  ,  11 1

2 2
s η η

⎛ ⎞
⎜ ⎟= ≡ =
⎜ ⎟⎜ ⎟
⎝ ⎠

Ε , 

3 1
33:  ,  1 3 2

4 4
s η η

⎛ ⎞
⎜ ⎟= ≡ =
⎜ ⎟⎜ ⎟
⎝ ⎠

Ε , 

4 2 0
34 :  ,  1 4 3 2

8 8 8
s η η

⎛ ⎞
⎜ ⎟= ≡ =
⎜ ⎟⎜ ⎟
⎝ ⎠

Ε , 

5 3 1
155 :  ,  1 5 10 8

16 16 16
s η η

⎛ ⎞
⎜ ⎟= ≡ =
⎜ ⎟⎜ ⎟
⎝ ⎠

Ε . 

Clearly, the simplest test for µ∗  fails. 
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